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Designing For Deep Mathematical Understanding 
 
 
Mathematical Inquiry 
 

Reasoning & Proof: (Chocolate Fixi; Consecutive Sums, Toothpick Problem) 

 Develops mathematical conjectures; e.g. notes patterns and attempts to explain why they 
are true 

 Attempts to generalize; i.e. systematically tests examples and counter-examples; 
considers under what conditions a statement or method is valid, possibly by testing 
extreme and/or special casesii 

 Distinguishes between necessary, possible, and impossible statements and identifies 
implications of what is known (e.g. “If 64 divides evenly by 8, then so must 128.”) 
  

Problem Solving: (Lamp Problem, Sharing Candy) 
 Develops a plan, modifies it as needed, simplifies if possible;  
 Identifies sub-problems and relates them to each other and to the main problem;  
 Considers strengths and weaknesses of various strategies  
 Considers similarities and differences between different strategies, different problems, 

and variations on a particular problem 
 
Modeling / Mathematizingiii: (Footprint Problem, Ice Melt Problem) 

 Describes situations mathematically by selecting relevant aspects of a situation and 
describing them with some form of mathematical symbol system (or model) 

 Considers strengths / weaknesses of model (e.g. “Is weight ÷ track area an appropriate 
way to describe ‘sinkability’?”);  

 Generalizes models of individual situations to models that work in a variety of situations 

 Compares models to see what can or cannot be represented and to see what insights 
can emerge from attempting to do so. 

 
Developing and Using Mathematical Proceduresiv:  

 Distinguishes between aspects of procedure that are necessary and those that are 
arbitrary (i.e. agreed-upon conventions) v 

 Compares effectiveness of invented strategies with conventional procedures (there is 
often a trade-off between transparency and efficiency) 

 Uses efficient procedures appropriately and accurately (note contrast with mathematizing 
above). 

 Considers reasonableness of answers 
 

Extending and Connecting Concepts:   

 Understands connections between various mathematical topics and representations (e.g. 
connections between multiplication and division; linear relations and proportionality) 

 Systematically explores variations of a particular concept; considers which dimensions 
might vary and to what degreevi 

 Systematically identifies all possible cases that fit particular constraints; where 
appropriate, shows that no others are possible (e.g. How many ways can you make a 
$0.50 with nickels, dimes, and/or quarters?)vii 

 Attends to and resolves discrepancies between aspects of understandingviii 
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Mathematical Work Habits (Productive Disposition) 

 Considers alternative ideas  

 Tolerates ambiguity  

 Willing to try own ideas before seeking help 

 Engages in a state of flow, characterized by extended periods of deep thinking 

 Experiences “aha!” moments that are often characterized by the excitement of trying to 
communicate ideas to the teacher or other students; e.g. involving loud expressions 
accompanied by bodily movement 

 Appreciates elegance; i.e. the appeal of simple but powerful arguments that help with 
solving problems or understanding mathematical concepts 

 
  
Establishing and Supporting Mathematical Community  

 Contributes to class discussion re: the development of ideas and solving of problems 

 Connects contributions to what others have said or done (This goes with....; I agree 
with....; I disagree with...; I think I see what ... means by ...; Another way of saying that 
might be….)  

 Respects other people and ideas; i.e. works hard to understand other views (asks 
questions, paraphrases, etc.); develops clear arguments to convince others of own views 

 
 

Communication  
 

 Shows work;  

 Selects or develops appropriate representations to explain and develop key ideas (uses 
writing, charts, diagrams, models, etc.) 

 Organizes complex ideas  

 Uses appropriate mathematical terminology and notation to express their ideas 

 Uses precise, concise, and unambiguous language to describe mathematical objects to a 
desired level of specificity (e.g. “a quadrilateral with 2 sets of parallel lines” might be a 
rectangle, square, rhombus, or parallelogram; parallelogram includes all of these; if other 
features are important, a more specific word could be chosen) 
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Strong Work in Mathematics 

Mathematical Inquiry: Are the students engaged in (a) mathematizing; (b) developing, 
refining, and comparing solution strategies; and/or (c) making and testing mathematical 
conjectures?  
When developing and comparing procedures, do students recognize a trade-off between 
efficiency and transparency?   
Do they distinguish between rules and / or terms that are arbitrary (merely conventional) 
and those that are defined by mathematical necessity?   
Do they notice connections between various topics they are studying?   
Do they systematically explore potential variations?   
Do they work to resolve discrepancies in their understanding? 

Evidence 
 
 
 
 

Mathematical Work Habits: Are students confidently voicing ideas that are partially 
formed or that may turn out to be wrong?  Are they persistent in testing their ideas? 

Evidence 

Mathematical Community: Are students contributing their own ideas, respecting other’s 
contributions, and attempting to connect various contributions? 

Evidence 

Communication: Are students seeking ways to show and organize their ideas?  Are they 
attempting to express their ideas with mathematical terminology that is shared by the 
broader mathematical community? 

Evidence 
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A few notes of clarification…. 
 
Mathematizing is much different from merely applying teacher-given procedures to 
solve a mathematical problem.  When students mathematize, they describe a situation in 
ways that make particular relationships more apparent.  They might draw a graph, write 
an algebraic expression, assign categories, etc., but they do so to make sense of 
something, not just to practice using a pre-determined algorithm, formula, or procedure.   
 
For example, many students develop algebraic expressions to describe how they count 
toothpicks in the toothpick problem, but they don’t do it simply because someone told 
them to “make an expression.”  They do so to express their method of counting more 
efficiently, and the expressions evolve as various students compare their solutions.  
 
As students develop, refine, and compare their solution strategies, they develop a 
more connected sense of why those strategies work and what they can do. 
 
Making and testing mathematical conjectures can take place any time students are 
involved in developing their own strategies and considering the limits of their application.  
Students can readily see that a rectangle cut in half diagonally produces a triangle 
whose area can be described by ½bh.  But does this apply to all triangles? 
 
Mathematical variation can be understood in terms of “dimensions of possible 
variation” and “range of permissible change” (Watson & Mason, 2005; 2006).  When 
variation is done systematically, richer understanding of concepts may be developed.  
For example, students might generate a whole collection of triangles with b = 1, h = 1.  
What does such a collection look like?  What do they all have in common?  How can 
they differ?  What happens if h = 2?   
 
The trade-off between efficiency and transparency is often apparent when students 
approach a new idea.  Students’ early attempts to develop procedures tend to be 
cumbersome.  With a little feedback, though, they do work - and more importantly, they 
make sense.  What is sometimes labeled “new math” is (rightly) criticized for leaving 
students with no efficient strategies.  But it is important to consider how students’ varied 
approaches are related to each other as well as to standard algorithms / procedures.   
 
For example, the long division algorithm is efficient within certain bounds.  But students 
don’t usually make an intuitive extension to decimals, and it’s not particularly helpful with 
fractions.  It’s efficient so long as you stay within the bounds to which it applies, but (for 
most) it’s not transparent in a way that makes extension / adaptation to new situations 
possible.   Students might adapt the methods below to work with decimals or fractions, if 
only because here they’re still thinking about the fact that they’re actually dividing, rather 
than “seeing if the 7 goes into 36,” “bringing down the 5,” etc.: 
 
In dividing 365 / 7, one student did the following: 
350 / 7 = 50  
10 / 7 = 1 R3 
5/7 = R5 
Total = 51 R8 = 52 R1 
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Another did this: 
50/7 = 7R1 
Do this 7 times, and you get 49 R7, or 50 
10/7 = 1 R3 
5/7 = R5 
Total = 50 + 1 R8 = 52 R1 
 
Neither provides a foolproof method that would work in any whole-number situation, but 
students are building a deeper understanding of division as they work.  Eventually, this 
deeper understanding can (and should be) be bridged with conventional and efficient 
procedures. 
 
The distinction between arbitrary and necessary (Hewitt; 1999, 2001a, 2001b) 
explicitly recognizes that some knowledge is purely conventional (e.g. a superscript 3 
means to the power of 3) and must be directly taught and memorized, while other 
knowledge can be figured out based on what is already known.  For example, in 32 * 33 = 
35; does adding the exponents always work?  Under what conditions?  What happens 
with 32 / 33?  (32 )3  32 )3)4?  If teacher and students agree on the meaning of the 
exponent, the exponent laws follow as necessary consequences, and students can be 
involved in developing them (and perhaps coming up with some of their own).   
 
Even when teachers recognize the distinction between arbitrary and necessary, students 
may not.  They struggle with what they perceive as arbitrary.  In what may seem like an 
extreme case, some students even memorize multiplication tables as though they were 
arbitrary and are surprised to discover that, say, “3x2” actually means something.  
Imagine trying to memorize that many math facts as though they were purely arbitrary!  It 
would be like trying to memorize a random sequence of letters or words.   
 
Mathematicians have long pointed to the aesthetics of mathematical arguments or ideas 
(cf Hadamard, 1945).  Research in mathematics education also emphasizes the 
importance of the affective domain (e.g. attending to elegance, visual appeal, surprise) 
to learning and doing mathematics (cf. Sinclair, 2006).  Further, all students are capable 
of and need opportunities to experience the intellectual enjoyment of the “aha!' moments 
of insight that can happen when they solve a problem or make an important connection 
between mathematical ideas (cf. Liljedahl, 2004).  Related to this is what 
(Csíkszentmihályi, 1996) called the state of “flow,” in which people fully engage in a task 
for an extensive period of time.  Current research in neuroscience has associated 
meaningful learning with both the state of flow and the aha! moment (discussed further 
in Friesen, 2007; OECD, 2007).  As teachers, it can be tempting to guide too much, 
thereby removing opportunities for students to have their own ahasix.   
 
With accessible tasks and sufficient time and space, all students are capable of this 
experience.  Even noticing the pattern in the sums of 10+1, 10+2, 10+3, 10+4, etc. can 
be an aha if we don’t teach it as a “strategy” to help with the learning of addition facts.  
Many good problems have multiple entry points.  Chocolate Fix involves many levels of 
deductive logic.  Anybody who can count past 100 can come up with a strategy for the 
“Toothpick Problem.”  In “Sharing Candy,” most middle school students can figure out 
the possibilities emerging from 2 kids sharing the candy with one candy left over.  In 
“Consecutive Integers,” most can figure out and explain a pattern for 2 consecutive 
integers.  The “Lamp Problem” typically evokes 2 conflicting responses, both accessible 
to anybody with very basic arithmetic; resolving the conflict is the main challenge. 
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A mathematical community must do more than provide opportunities for students to 
publicly share their ideas.  It should be a place where those ideas interact and evolve 
together (Davis & Simmt, 2003).  For this to happen, teachers must structure the sharing 
and students must develop strategies for questioning and responding to one another.  
 
When students use mathematical terminology to express their ideas, it is important 
that they are first allowed to develop their ideas.  The terms are merely applied to 
understandings they have already worked with extensively. 
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Sample Problems 

 
While none of the categories of mathematical inquiry can stand alone, particular 
problems may have stronger emphasis on certain modes of inquiry.  If engaged deeply, 
the ones offered here offer much to think about. 
 
Chocolate Fix: A deductive logic puzzle by ThinkFun® available as a board game or as 
an iTunes app 
 
Consecutive Sums: Which numbers can be expressed as the sum of consecutive 
numbers?  In how many ways can a particular number be so written?  (e.g. 21 can be 
written as 6+7+8, as 1+2+3+4+5+6, or as 10+11).  (from Mason, Burton, & Stacey, 
2010). 
 
Toothpick Problem: How many toothpicks would it take to make the shape below (one 
side of each small square is made up of one toothpick)?  Which methods show more 
efficient ways of counting?  Can you find an efficient method that works for a rectangle of 
any size?  (Adapted from Mason, Burton, & Stacey, 2010) 

        

        

        

        

        

        

 
Lamp Problem: Suppose you buy an antique lamp for $7, then sell it for $8. You buy the 
same lamp back for $9, then sell it for $10. How much profit do you make? (adapted 
from Schultz, 1977/1982, p.12)  
 
Sharing Candy: A bag of candy sits on a table. If two kids share all the candy so that 
each one gets the same number of pieces, there's one candy left over. If three kids 
share the same candy equally, there are two candies left over. If four kids share the 
candy equally, there are three candies left over. If five kids share the candy equally, 
there are four candies left over. If six kids share the candy equally, there are five candies 
left over. How many candies are in the bag?  Is there more than one possibility?  What 
happens if you add the requirement that if seven kids share the candy equally, there are 
six candies left over?   Eight with seven?  Nine with eight?  Can this be extended 
indefinitely?  What happens if there are two instead of one left over each time? 
 
Footprint Problem: How accurately can you predict a person’s height from a footprint? 
 
Ice Melt Problem: Given a funnel of ice melting into a graduated cylinder for an unknown 
amount of time, can you figure out when the ice started melting? (Adapted from Wise, 
1990) 
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Notes 

                                                        
i Sample problems are included in this document.  While no problem fits neatly into one 
category of inquiry, some lend themselves particularly well to one type or another.   
 
ii Mason, Burton, and Stacey (2010) developed an excellent resource for developing 
mathematical reasoning and problem solving.  First published in 1982, it includes a large 
collection of rich problems.  The most recent (2010) edition also considers how these 
might align with traditional curriculum distinctions. 
 
iii Richard Lesh and his colleagues have done much to distinguish mathematical 
modeling from traditional problem solving (cf. Lesh & Harel, 2003).  Dan Meyer’s (2012) 
description of the “ladder of abstraction” is also helpful in clarifying the distinction 
between mathematizing and merely applying mathematical procedures.  Catherine 
Fosnot and her colleagues have developed excellent descriptions of mathematizing at 
the K-6 level (Fosnot & Dolk; 2001a, 2001b, 2002). 

 
iv The categories used here are influenced in part by Kilpatrick, Swafford, and Findell’s 
(2001) five strands of mathematical proficiency: conceptual understanding, procedural 
fluency, strategic competency, adaptive reasoning, and productive disposition.  

 
v Dave Hewitt (1999, 2001a, 2001b) did a wonderful job of drawing attention to the 
distinction between what is arbitrary and necessary in mathematics. The story of “Benny” 
(Erlwanger, 1973) provides a classic example of a student who treats mathematical 
procedure as arbitrary.  An interesting discussion of this piece may be found at 
http://blog.mathed.net/2011/07/rysk-erlwangers-bennys-conception-of.html. 
 
vi Anne Watson and John Mason (2006) talk about the “dimensions of possible variation” 
and “range of permissible change” afforded by particular mathematical concepts. 

 
viiJohn Mighton provides an excellent collection of tasks that allow students to practice 
working systematically in Chapter 10 of The Myth of Ability. 
 
viii Suzanne Donovan and John Bransford emphasized the importance of “engaging 
resilient preconceptions” in mathematics.  They offered three strategies for doing so: (1) 
Draw on knowledge and experiences that students commonly bring to the classroom but 
are generally not activated with regard to the topic of study (p. 569); (2) Provide 
opportunities for students to experience discrepant events that allow them to come to 
terms with the shortcomings in their everyday models (p. 571); and (3) Provide students 
with narrative accounts of the discovery of (targeted) knowledge or the development of 
(targeted) tools (p. 573).  
 
ix Jung-Beeman et al (2004) observed the brain activity of participants completing 
“Compound Remote Association Puzzles,” in which they have to think of a word that 
could be combined with each of three prompts; e.g. pine / crab / sauce (apple allows 
pineapple, crabapple, and applesauce). The answer was associated with a rush of 
gamma waves in the right hemisphere.  Simply reading the answers, however, doesn’t 
feel very interesting.  Try these: cottage / swiss / cake (cheese); iron / shovel / engine 
(steam); flake / mobile / cone (snow).  Now try these (no answers given): cream / skate / 
water; dew / comb / bee; political / surprise / line. 

http://blog.mathed.net/2011/07/rysk-erlwangers-bennys-conception-of.html

