The Egyptians only used fractions with a numerator of 1.*
Take the fraction 80/100 and keep subtracting the largest possible Egyptian fraction till you get to zero. Three Egyptian fractions are enough:

$$
80 / 100=1 / 2+1 / 4+1 / 20
$$

Do the same for $85 / 100,90 / 100,95 / 100$, and if you are particularly fond of Egyptians, 99/100.

Egyptian Fractions were found on the Rhind Mathematical Papyrus.

This papyrus is a scroll that got its name from a sickly young man called Henry Rhind who bought the papyrus in Luxor, Egypt in 1858 shortly before his death at age 30.

The papyrus was written by a scribe called Ahmes sometime between 1600 and 1650 BC. He probably copied it from a still older source.

The papyrus is about 33 cm high and 5.6 meters long. Gay Robins \& Charles Shute translate its initial lines as follows:

Correct method of reckoning, for grasping the meaning of things and knowing everything that is, obscurities... and all secrets.

Extensions:

Show that any fraction $2 / \mathrm{N}$ (where N is odd) can be expressed as the sum of two Egyptian fractions, one of which is the largest Egyptian fraction less than $2 / \mathrm{N}$.

Fibonacci proved that if you keep subtracting the largest possible Egyptian fraction you will always get to zero in a finite number of steps. Is this true if you limit yourself to Egyptian Fractions with an odd denominator? Warning: This is an unsolved problem in mathematics.
*This is not quite true; the Egyptians also used $2 / 3$, but we will ignore this little anomaly.

The Math in This Problem:

Egyptian Fractions are unique because they only possess numerators equalling 1. In this brainteaser, students will manipulate fractions in order to create a summation of Egyptian Fractions, starting with the largest possible term and ending with the smallest possible term.

