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LEARNING MATHEMATICS IN AN ACCESSIBLE CLASSROOM 
 

 
Background Information And Project Description 

“Math. The bane of my existence for as many years as I can count.  I cannot 
relate it to my life or become interested in what I’m learning. I find it boring 
and cannot find any way to apply myself to it since I rarely understand it.” 
(ATA, 2003, p.28) 
 
“Was ever a human activity preached so differently from how it was 
practiced, taught so clumsily, learned so grudgingly, its light buried beneath 
so many bushels, as mathematics?”  (Kaplan & Kaplan, 2007, p.117) 
 
 

Introduction 
 

Teaching And Learning Mathematics 

Perhaps more than any other discipline, the teaching of mathematics lends itself 
to procedural recipes where students memorize and duplicate procedures by 
rote: if it looks like this, do that to it. “For many, mathematics is the torture of 
tests, homework and problems, problems, problems” (Burger and Starbird, 
2005, p.xi).   
 
“If one believes that mathematics is mostly a set of procedures—rules and 
truths—and the goal is to help students become proficient executors of the 
procedures, then it is understandable that mathematics would be learned best 
by mastering the material incrementally, piece by piece” (Stigler and Hiebert, 
1999, p.90).  Teaching practices that commonly flow from this view are 
demonstration, repetition and individual practice.  In addition to being a 
misunderstanding of the discipline of mathematics itself, this belief also colors 
people’s views about who can learn mathematics. Curricula and teaching 
practices are often based on what Mighton (2007, p.2) calls a destructive 
ignorance “that leads us, even in this affluent age, to neglect the majority of 
children by educating them in schools in which only a small minority are 
expected to naturally love or excel at learning”, particularly mathematics.  He 
insists that too many students lose faith in their own intelligence, and too much 
effort is directed at creating artificial differences between fast and slow, gifted 
and “special”, advanced and delayed. 
 
And worse yet, procedural approaches to the teaching of mathematics that 
create problems of understanding and engagement are applied with even more 
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vigor in remedial programs designed to help those very students for whom such 
practices did not work in the first place (Swain and Swan, 2007).  
 
Fuson, Kalchman and Bransford (2005), Mighton (2003, 2007), Stigler and 
Hiebert (1999) and Swain and Swan (2007) argue that other approaches are 
needed to help students learn mathematics.   “Today, mathematics education 
faces two major challenges: raising the floor by expanding achievement for all, 
and lifting the ceiling of achievement to better prepare future leaders in 
mathematics, as well as in science, engineering, and technology.  At first 
glance, these appear to be mutually exclusive” (Research Points, 2006, p.1).  
But are they?  Is it possible to design learning that engages the vast majority of 
students in higher mathematics learning?  

 
The purpose of this study is to determine whether the principles of Universal 
Design for Learning (UDL) result in increased student mathematical proficiency 
and achievement for all students in a typical Grade 7 classroom, including those 
with identified learning needs. 
 
Kilpatrick, Swafford and Findell (2001) define mathematical proficiency in terms 
of five intertwining strands:  

• conceptual understanding – an understanding of concepts, operations 
and relations.  Conceptual understanding frequently results in students’ 
comprehending connections and similarities among interrelated facts. 

• procedural fluency – flexibility, accuracy and efficiency in implementing 
appropriate procedures.  Skill in proficiency includes the knowledge of 
when and how to use procedures.  This includes efficiency and accuracy 
in basic computations. 

• strategic competence – the ability to formulate, represent and solve 
mathematical problems.  This is similar to problem solving.  Strategic 
competence, conceptual understanding and procedural fluency are 
mutually supportive. 

• adaptive reasoning - the capacity to think logically about concepts and 
conceptual relationships.  Reasoning is needed to navigate through the 
various procedures, facts and concepts required to arrive at solutions. 

• productive disposition – positive perceptions about mathematics.  
Productive disposition develops as students gain more mathematical 
understanding and become capable of learning and doing mathematics. 
 

 
These five intertwining strands map directly to the three principles of learning 
identified by Bransford, Brown and Cocking (2000): 

• Engaging students’ preconceptions and building on existing knowledge 
builds a productive disposition. 

• A foundation of factual knowledge (procedural fluency) tied to a 
conceptual framework (conceptual understanding) and “organized in a 
way to facilitate retrieval and problem solving (strategic competence)” 
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(Fuson, Kalchman & Bransford, 2005, p.218) builds mathematical 
proficiency. “Because mathematics has traditionally been taught with an 
emphasis on procedure, adults who were taught this way may initially 
have difficulty identifying or using the core conceptual understandings in 
a mathematics domain” (Fuson, Kalchman & Bransford, 2005, p.233).   

• Ongoing sense making or adaptive reasoning, reflection and problem 
solving or strategic competence support a metacognitive approach 
which enables student self-monitoring. 

 
Guided by the definition of mathematical proficiency and principles of how 
people learn derived from the learning sciences, the research team1 designed 
interventions in teaching concepts of geometry to a class of Grade 7 students of 
mixed ability as determined by Individual Program Plans (IPP’s) in place at the 
time of the research.  The design of the intervention was based on the following 
assumptions about effective mathematics instruction: 

• connections between and among the proficiency strands are inherent; 
• every student can make progress along every strand; 
• mathematical reasoning as a set of practices and norms is (1) collective, 

not merely individual or idiosyncratic, and (2) rooted in the discipline of 
mathematics” (Ball & Bass, 2003, p.3); 

• teaching students to reason mathematically requires them to formulate 
conjectures, create and use networks of concepts and processes, justify 
solutions and find proof that their solutions are valid; 

• lessons are structured to address misconceptions, build coherence and 
help students make connections that are not inherently obvious; and 

• effective instructional design integrates a sequence of instructional 
activities into a coherent whole (Fernandez, Yoshida, & Stigler, 1992). 
Students need coherent mental representations in order to use those 
representations to form new knowledge 

 
In the past, such instructional design was generally reserved for students 
thought to be innately talented in mathematics.  Our interest was to test the 
hypothesis that interventions in instructional design would permit all students in 
an ordinary classroom to build and demonstrate mathematical proficiencies as 
defined in this research report, including students on IPP’s designed to address 
their previously identified learning challenges. 
 
 

Universal Design For Learning 
Three elements converged in decisions about the research intervention 
designed for this study: a clear definition of mathematical proficiency; alignment 
of that definition with findings from the learning sciences; and key assumptions 
about the teaching of mathematics.  A fourth element was required in order to 

                                                      
1 Our use of this term includes the teacher. 
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specifically address (1) students with identified learning needs and (2) the role 
of technology in the mathematics classroom. 
 
 “Recent educational innovations, such as differentiated instruction and 
universal design for learning (UDL), offer insights into proactively planning 
instruction that embraces academic diversity” characteristic of most ordinary 
classrooms (Edyburn, 2006a, p.21). UDL is grounded in emerging insights 
about brain development, learning, and digital media. Rose and Meyer (2002, 
2006) and Rose, Meyer and Hitchcock (2005) observe that the disconnect 
between an increasingly diverse student population and a “one-size-fits-all” 
curriculum will not produce the desired academic achievement gains expected 
in the 21st century. Drawing on the historical application of universal design in 
architecture, they advance UDL as a means of focusing educational research, 
development, and practice on understanding diversity, technology, and learning. 
 
This study derives from such a focus. 
 
Because of the structure of our current education system, which makes sharp 
distinctions between “regular” and “coded” students, UDL has been taken up 
most seriously in special education where issues of access to high quality 
learning experiences for variously identified special needs students carry a 
particular urgency (Firchow 2002; Meo 2005).  But all proponents of UDL 
actually make much larger claims for their ideas:  

• that diversity in the classroom is the norm rather than a problem to be 
fixed;  

• that paying attention to what does—and does not—work for students 
generally relegated to the margins will improve learning for all;  

• that all students can meet similar learning goals if curricula, instruction 
and assessment are radically reconceptualized; and  

• that effective use of technology enables all students to represent, 
express and engage with ideas in multiple ways not generally seen in 
conventional classrooms. 

 
To the extent that principles of UDL are increasingly familiar in Alberta, we will 
not summarize the field in general.  Rather, we draw on the following key 
principles as they provide a focus for dismantling procedural methods of 
teaching mathematics in favor of developing mathematical proficiency for all. 
 

1. Procedural approaches to the teaching of mathematics privilege naked 
independence (Edyburn 2006a, p.22): the notion that completing tasks 
without performance-enhancing access to technology is superior to 
performance that is enhanced through technology.  This out-dated 
formulation of what it means to be an educated person ensures that 
academic achievement is reserved only for able-bodied individuals, and 
only for those individuals who are able to succeed without external 
support, resources or technology. For many students, “technology can be 
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the difference between students with special needs sitting in a classroom 
watching others participate and all students participating fully” (Bausch 
and Hasselbring, 2005, p.9).  And for all, access to a wide variety of 
digital media permits mathematical explorations that are difficult or 
impossible with only pencil and paper.  These media include (but are not 
limited to) spreadsheets and databases, simulations, software such as 
Geometer’s Sketchpad, computer assisted design, programming, 
interactive games, etc. Accessible classrooms are media rich (Friesen 
2006). 

2. Disability can be conceived as a mismatch between the learner’s needs 
and the education offered (Rothberg and Treviranus 2006).  Rather than 
conceptualized as a personal trait, disability can be seen as an artifact of 
the way children are taught (Mighton, 2007, p.24). Many students come 
to dislike mathematics because of their experiences in school.  Even 
worse, they lose faith in themselves as learners.  That is, the mismatch 
between what is offered and what they need in order to become 
engaged, enthusiastic and proficient learners may actually create what 
come to be identified as mathematical learning disabilities. 

3. UDL design principles focus on creating clear goals, flexible methods 
and materials, and embedded assessments that enable all learners 
including those with disabilities to access knowledge, participate and 
progress.  

4. Learning is about deep understanding, constructing knowledge and 
developing skills and thus requires a careful balance of support, 
challenge and opportunity. “But the most fundamental change will come 
in our understanding of goals. The ultimate educational goals will no 
longer be about the mastery of content (content will be available 
everywhere, anytime, electronically) but about the mastery of learning” 
(Rose & Meyer, 2000a).  

5. UDL calls for: 
• Multiple means of representation, to give learners various 

ways of acquiring information and knowledge, 
• Multiple means of expression, to provide learners 

alternatives for demonstrating what they know, 
• Multiple means of engagement, to tap into learners' 

interests, offer appropriate challenges, and increase 
motivation 

                                                                                    (CAST, 2006) 
 

 

Accessing The General Curriculum 
In educational research, the word “curriculum” can be defined in both narrow 
and broad ways.  In its narrowest sense, curriculum can be taken to mean the 
mandated Program of Studies, or core curricula.   
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For the purposes of this study, we will use the word curriculum in a broader 
sense to include: 

• The mandated Program of Studies for mathematics in Alberta   
• Instructional design of a four week study of geometry, which is identified 

in the Program of Studies under the topic of Shape and Space 
• Instructional strategies and pedagogy 
• Resources and supports 
• Assessment 

 
Conventionally, when students have difficulties learning concepts and skills 
outlined in the Program of Studies, modifications to instructional strategies, 
pedagogy and resources and support are provided.  Generally, material thought 
to be too complex or difficult for them to master is broken down into smaller 
pieces.  Often they are given work that appears easier, or that requires 
increased practice and skill-building drill, sometimes with the aid of classroom 
assistants and pull-out programs.   
 
The prevailing assumption is that mathematical difficulties lie in the inherent 
inability of the individual student to master the mandated program of studies in 
ways that are unproblematic for normal or regular students. Accommodations 
are provided to remediate these difficulties to the extent possible for each 
disabled learner, however disability is defined for that individual. In a nutshell, 
differences among and between learners are generally regarded as a problem 
to be remedied with modification to existing programs. 
 
UDL challenges this assumption in fundamental ways (Rose & Meyer 2002; 
Hendricks and Daley 2004): 

• Students with disabilities are understood to fall along a 
continuum of learner differences among all students rather 
than constituting a separate category; 

• Teacher adjustments for learner differences should occur 
for all students, not just those with disabilities; 

• Curriculum materials should be varied and diverse for all 
learners, including digital and online resources; 

• Instead of “fixing” students so that they can learn from a set 
curriculum, resources and teaching methods and designs 
for learning need to be flexible enough to accommodate a 
wide range of learner differences from the outset. 

 
Too many students do not “get” conventional approaches to the teaching of 
mathematics. This is not limited to those with identified learning disabilities but 
also includes “non-coded” learners struggling with the culture, language and 
access to learning.  
 
It also includes those who just simply come to dislike math.  
 



 12 

 

Designing “Dynamic” Assessment 
Fair and accurate assessments of learning allow all students to demonstrate 
their progress and understanding in multiple ways. Traditional print-based 
assessments often measure facts and recall, and conventional assessment 
tools such as multiple choice tests or fill-in-the blank worksheets often block a 
true picture of the learning (Rose, Meyer and Hitchcock, 2005). 
 
Dynamic assessment provides learning scaffolds and feedback to the learner 
and to the educator.  Multiple means of expression and assessment enable 
both educators and students to assess what they currently know and to identify 
and plan the required next steps.  Dynamic assessment aligns closely with 
teaching goals and methods. Assessment of, for and as learning is an integral 
part of the instructional design process.  It is also a key aspect of the design of 
this research study.  Constant assessment of students’ developing proficiencies 
and their misconceptions guided the direction of the intervention on an on-going 
basis.  Thus, while conventional measures of achievement derived from tests 
following instruction are helpful in assessing the end results of teaching, they 
are only one of myriad forms of assessment designed to provide direct 
feedback to both learner and teacher on students’ developing proficiency 
throughout a unit of study.   

 
Researchers at Boston College found that when students were given access to 
computers to digitally compose their answers to written portions of tests, they 
scored significantly higher than those using paper and pencil (Dolan and Hall 
2001). Digital tools and expressive media give students a wide range of 
opportunities to represent and express what they are learning.  When such 
media have built-in capacities for interaction, they also provide immediate 
feedback on performance.  Consider, for example, how engaging a computer 
game can be as players strive to develop the skills they need to move to the 
next level of play. The learning environment, itself, is designed to give precise 
feedback.  No gamer needs to wait for a Friday morning quiz to see if she is 
progressing. 
 
Inflexible standardized assessment that does not meet the learning needs of 
students confounds the measurement of knowledge and abilities (Dolan and 
Hall 2001), even when that assessment is computer-based.  If assessment 
practices remain a one-size-fits-all method of sorting out ability hierarchies in 
the classroom, they will give incomplete pictures of the multiple ways in which 
individuals develop their proficiencies. Well-designed, embedded, dynamic 
assessment practices have the potential to remove many of the current barriers 
to learning in the mathematics classroom.  
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Assistive Technology (AT), Digital Media and Universal Design for 
Learning (UDL) 

It is becoming increasing difficult to differentiate between assistive technologies, 
digital media and universal design for learning; therefore, it is not unusual that 
many teachers confuse assistive technologies and UDL.  By definition, “AT is an 
intervention that is explored after a performance problem is identified.  On the 
other hand, UDL is proactive instructional design that seeks to build learning 
environments and instructional materials with supports that enable all students 
to achieve the academic standards despite differences” (Edyburn, 2005). These 
definitions seem fairly straightforward; however, divisions between AT, digital 
media and UDL are actually less distinct. 

 
In the mathematics classroom, calculators could be considered an assistive 
technology because they are "an item, piece of equipment, or product system 
which can be used to increase, maintain, or improve the functional capabilities2" 
of the student. In Alberta, “assistive technology for learning (ATL) is defined as 
the devices, media and services used by students with physical, sensory, 
cognitive, speech, learning or behavioural disabilities to actively engage in 
learning and to achieve their individual learning goals” (Alberta Education, 2006, 
ch.9, p.1). Web resources such as WebMath (http://www.webmath.com/) can 
also be considered an ATL. Edyburn (2006c) reports, “the performance data 
associated with [a] student using a technology intervention (i.e., WebMath) 
reveals a considerable difference in performance gains of 40 percent and 50 
percent during the short period in which this intervention was provided” (p.4).    
 
For some students, a lack of procedural fluency impedes their ability to gain 
mathematical proficiency.  Therefore, an educational conundrum arises.  Should 
the teacher provide students with calculators or WebMath only after a 
performance problem has been identified?  And for how long must a student 
manifest this performance problem before the appropriate AT or ATL is 
provided?  One year, two years, five years?  
 

Rothberg and Treviranus (2006) challenge us to expand our definition of 
a disability within a learning context.  They contend that a disability is a 
mismatch between the learner’s needs and the education offered.  They 
further suggest that a learning disability is not a personal trait but an 
artifact of relationship between the learning environment or education 
delivery.  They argue for the need to create accessible classrooms, 
which involves the ability of the learning environment itself to adjust to 
the needs of all learners.  (Friesen, 2006, p.7). 

 
 
Working with the principles of UDL, the teacher anticipates that some students 
might have difficulties with procedural fluency and therefore proactively builds 
the use of calculators, WebMath or any other instructional materials into the 
                                                      
2 (Individuals with Disabilities Education ACT (IDEA) 20, USC, Ch 33, Section 1401 (25) US 
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instructional design.     
 
In addition, the teacher would design multiple opportunities for all students to 
use a wide range of digital environments to represent, express and engage with 
mathematical ideas. 
 

 
Setting The Alberta Context 
Alberta students consistently score very well on international (PISA, TIMSS) 
and national (SAIP) mathematics studies3.  Given such high international and 
national standings, many educators in Alberta might question why Alberta 
Education would be interested in ensuring even higher achievement for all 
students in the area of mathematics.  Perhaps this can be best explained by a 
brief conversation that Dr. Friesen had with an individual from Alberta 
Education’s Assessment Branch.  In discussing Alberta’s success on the 
recently released PISA 2006 findings, in which Alberta scored second only to 
Finland, this person stated, “We still have work to do.  There is no place to 
stand still.  If you are standing still you are actually going backwards.”   
 
This research study is designed to encourage continued conversation about 
going forward with mathematics education in this province, particularly in terms 
of: 

• better meeting the needs of Alberta’s increasingly diverse student 
population; 

• reducing the number of students who give up on the study of 
mathematics; 

• determining whether achievement scores alone give a finely grained 
enough view of actual mathematical proficiency. 

 
 
Building On Previous Alberta Research Studies 
In 2006, Alberta Education contracted Dr. Sharon Friesen from the Galileo 
Educational Network to conduct a research study to: 

• identify and describe an innovative, accessible classroom; 
• describe how digital technologies are and might be used to enable all 

learners.  These technologies include devices, media and services 
currently on computers or those that could be incorporated to ensure 
all students are equitably engaged in learning; 

• identify and describe the ways in which a teacher uses or might use 
digital technologies to extend and enrich learning for all students in 
the regular classroom; 

• envision what might be possible in creating an accessible classroom;  
• design what an optimal accessible classroom might look like, 
• provide recommendations for teachers, schools, school districts and 

governments on the creation of accessible classrooms; and 
                                                      
3 See reports http://education.alberta.ca/admin/testing/nationaltesting.aspx 
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• add to the body of research knowledge and theory about the factors 
that contribute to the successful accessible classroom 

 
 This study found that: 

• accessible classrooms are media rich; 
• accessible classrooms follow the principles of Universal Design for 

Learning; 
• teachers of accessible classrooms make the curriculum accessible to 

all learners; and 
• accessible classrooms require learning focused networks. 

 
Alberta Education contracted Dr. Friesen to conduct this current study to build 
on findings from the first study.  They were particularly interested in the ways 
that the four findings would play themselves out in a mathematics classroom. 

 
 

Context Of This Study 
Learning Mathematics in an Accessible Classroom was conducted in a Grade 7 
classroom in Foothills School Division over a four-week period beginning at the 
end of May 2007 and concluding in the middle of June 2007. The research was 
designed to introduce an intervention into the classroom to determine the extent 
to which it was possible to make mathematics accessible to all learners.   The 
researchers were particularly interested in students’ mathematical proficiency 
and related achievement when students had multiple ways to: 

• access mathematical information and resources; 
• express their mathematical understanding; and 
• engage with the mathematical concepts. 

 
This study of focused on one aspect of the Grade 7 mathematics curriculum—
Geometry.  The learning tasks were designed to combine three aspects of the 
Geometry curriculum strand—measurement, 3D objects and 2D shapes and 
transformations. Principles of UDL were built into the instructional design.  
Cognitive supports, mentoring, scaffolding, continuous assessment and 
collaboration were provided for all students in the design of the social and 
electronic learning environment of the classroom. 

 

  
Design of the Study 

 
Purpose and Goals of the Study 
The purpose of this research was to investigate and report findings to Alberta 
Education on: 

• the impact of Universal Design for Learning on student mathematics 
proficiency and achievement ; 
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• instructional practices that support mathematics learning for all students, 
particularly those who are identified with special needs.  

  
 
The goals of the research were: 

• to determine the academic achievement of a diverse group of students 
in a grade 7 mathematics classroom through a statistically valid and 
reliable pretest and posttest; 

• to determine the look and feel for the context of the classroom through 
videotaping; 

• to work with the teacher to design a study based on the principles of 
Universal Design for Learning; 

• to determine the academic achievement of the same group of students 
through a statistically valid and reliable posttest; 

• to provide a visual image of a mathematics classroom that follows the 
principles of Universal Design for Learning; and 

• to add to the research body on how to create effective learning 
environments for diverse learners.  

 
Research Design and Methodologies 
Principles of design-based research informed both the design and the methods 
used throughout this study.  “Design-based research can help create and 
extend knowledge about developing, enacting, and sustaining innovative 
learning environments” (The Design-Based Research Collective, 2003, p.5). 
Design-based research is not a research methodology; rather, it uses both 
qualitative and quantitative methodologies.  It is used when the purpose of the 
research endeavour is towards sustained innovation, to envision what is not yet, 
what might be possible in real education settings (Kelly, 2003; van den Akker et 
al., 2006).     

 
Design-based research is interventionist.  Design researchers are trying to 
make things happen; therefore, there is no claim of objectivity, and the lines 
between actor and observer are intentionally crossed.  “The best design 
research has a visionary quality that cannot be derived from these other kinds 
of research, nor does it often arise from practice. It requires a research 
community driven by potentiality” (Bereiter, 2002, p.324).   
 
The particular strength of design-based research is its ability to increase the 
capacity of participants to make evidence-based decisions that feedback to 
change practice while the study is in progress.  This is a significant difference 
from more conventional research designs in which findings emerge primarily at 
the end of the study when participants have no opportunity to act on them within 
the context of the stated goals of the project.   
 
Because the capacity to make evidence-based decisions is key to the 
sustainability of any innovation, design-based research has a unique capacity to 
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reflect the current state of practice and implementation.  It also has the capacity 
to develop participants’ insights and abilities to implement chosen goals (Barab 
and Squire, 2004).  
 
“Design-based research methods focus on designing and exploring the whole 
range of designed innovations: artifacts as well as less concrete aspects such 
as activity structures, institutions, scaffolds and curricula” (The Design-Based 
Research Collective, 2003, p.5 - 6). These methods require close collaboration 
between the designers of the innovation and the researchers. In this study, 
researchers and participants were in daily contact. Dr. Friesen did much of the 
actual classroom teaching, helping by example and by regular debriefing to 
increase the regular teacher’s capacity to design, instruct and assess in ways 
consistent with the study’s vision. 
 
Design-based research is particularly sensitive to local contexts.  As 
researchers, we anticipated that the mathematics study that was the focus of 
this study would undergo a series of design cycles, enactment, analysis and 
redesign deeply situated in or growing out of their own context.  Thus the initial 
plans for the geometry study were created with the certainty that how students 
responded would change subsequent lessons.  That is, there was no attempt to 
implement a study or material created outside the context of this classroom, and 
these students. 
 
Our challenge was “to develop methodologies which recognize complexities 
and yet produce robust measures of impact or added value” in order to 
contribute to the understanding of policy makers (Pittard, 2004, p.181).  We did 
this not by designing a program that could be scaled for delivery across the 
province.  Rather, we have extracted examples and principles for responsive 
teaching in technology-rich environments that improve mathematical proficiency 
and achievement for all students, including those identified with special learning 
needs. 
 

 
Data Collection  
Students whose parents signed consent forms wrote a pretest and post-test. 
The pretest was administered before the intervention began.  The post-test was 
administered at the conclusion of the four-week intervention.   Students were 
given 45 minutes for both administrations of four sample task geometry related 
test questions selected from PISA 2000, 2003, 2006: Continent Area, 
Carpenter, Farms and Twisted Building4.   While the students in this study were 
younger than students selected to write PISA mathematics examinations, the 
researchers were interested in finding test items that were:  

• reliability and validity tested (Adams & Wu, 2002);  
• designed to assess conceptual understanding and procedural fluency; 

                                                      
4 These tasks were released in December 2006 in a document called PISA Released Items for 
Mathematics which can be found at www.oecd.org/dataoecd/14/10/38709418.pdf 
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• organized contextually in order to facilitate problem solving or strategic 
competence.  

 
The study was conducted in a rural school board in Alberta.  There were a total 
of 36 students in the classroom.  This group of students was composed of nine 
students, eight boys and one girl, who were (1) coded with social, emotional or 
academic disabilities and (2) had Individual Program Plans (IPPs) in place.   
There were also two students who were coded as gifted.  These two students 
also had IPPs in place. 
 
Table 1 shows the eligibility special education code assigned to 11 of the 36 
students in this class and the meaning of this code.  It also shows the number of 
students in the class assigned that particular code. 
 

Table 1: Types of Special Codes 
Special 

Education 
Code 

 
Meaning Of Code 

 
Number of Students 

51 Mild Cognitive Disability 1 
54 Learning Disability 7 
80 Gifted and Talented 2 
38 Assigned by School Jurisdiction 1 

  11 
 
 
Table 2 shows that, of the available sample of 36 Grade 7 students, 72% 
(N=26) signed consent forms and produced data from both administrations of 
the four task questions. 

 
 

Table 2: Overall Participation 

Students 
Students in 
classroom 

Signed 
Consents 

Valid pre-
test data 

Valid post-
test data 

Valid data 
for both 

Participation 
rate 

Learning  
Disabilities 9 6 6 6 6 67% 

Gifted 2 2 2 2 2 100% 
Regular 25 18 18 21 20 72% 

 36 26 26 26 26 72% 
 

 
In addition to the pretest and post-test, observational data was collected from 
two sources: video observations of classroom interactions and field notes from 
classroom observations. 
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Samples of student work were collected throughout the intervention from 
students whose parents had provided consent. 
 
Researchers interviewed the teacher and the principal. This consisted of a 
semi-structured interview conducted at the end of the research study.  We 
recorded and transcribed interviews and provided each of the interviewees an 
opportunity to review and edit their transcript.   

 
Data Analysis 
Researchers collected both qualitative and quantitative data.  All audio data, 
observational data, and field notes went through an iterative process of reading, 
rereading and review.  Pre and post-test data were statistically analyzed using 
SPSS.   
 
 
 Transcripts 
Transcripts from interviews were initially read in their entirety to a get a sense of 
their content and context, without imposing a specific analytic lens.  In the 
second stage, researchers independently read the same text and coded it 
independently to determine descriptive categories and criteria.  We then 
compared our coding to establish consistency.  These were not a priori 
categories and criteria; rather, they emerged from the analysis of the transcripts 
themselves.  The aim of this level of analysis was to map out the data, review it 
for further analysis, and become more familiar with its content. 

 
We also analyzed the transcripts to discern patterns of experience.  We coded 
the transcripts, noting all data that related to the patterns.  The identified 
patterns were then expounded on and combined. We defined themes derived 
from patterns such as conversation topics, recurring vocabulary, recurring 
activities, meanings, and/or feelings.  Themes that emerged from the 
participants’ accounts formed a comprehensive picture of their collective 
experience. In this way, we were able to establish which themes and sub-
themes fit together in a meaningful way (Leininger, 1985).  

  
Observational Analysis 

Researchers collected observational data in two ways.  Video footage was 
collected during math classes. The video data was transcribed.  One researcher 
conducted focused observational notes during the 16 classes.  These notes 
were analyzed to discern patterns.   
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Pretest – Post-test Design and Analysis 
The experimental design of this part of the study is a one-group pre-test post-
test design.  Twenty-seven students were pre-tested.  They then participated in 
the intervention, and then were post-tested at the conclusion of the intervention.  
Students who did not participate in both the pretest and the post-test were not 
included in the analysis.  
 
The success of the treatment is determined by comparing the results of the pre-
test and post-test scores.  The paired-sample t-test for non-independent 
samples was used to determine if there was a significant difference between the 
means of each sub-unit of instruction and the total scores.  By requiring a higher 
value to reject the null hypothesis, the t-test makes adjustments for smaller 
sample size (Gay, Mills, and Airasian, 2006). An alpha level of .05 was used for 
all statistical tests. 
 
 
Research Limitations 

Limitations of the one-group pre-test post-test design 
When the participants do significantly better on the post-test than on the pre-
test, with no control-group one cannot assume that the improvement is only 
attributed to the treatment.  For instance, history and maturation of the students 
is not controlled.  The participants may learn how to perform better with each 
test.  Also, participants may have learned something from the pre-test (Gay, 
Mills, and Airasian, 2006). 
 
In addressing these limitations, qualitative data were used to provide contexts 
from which to analyze changes in achievement. 
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The Math Classroom  

 
Students 
The students in this study 
represent a fairly homogeneous 
population in terms of their 
background.  The school is 
located in a catchment area that 
butts up against a large urban 
metropolis.  Some students live 
on farms, while others live on 
acreages.  So while these 
students live close to a city, they 
are country kids. 
 

Figure 1: Students 
 
What initially struck us, and many others who visited the classroom, was the 
large number of students in the class.  It wasn’t until the teacher started to 
describe her students that the other part of this picture emerges: the large 
number of students with identified special needs on IPPs.  
 
 

 
Table 3: Comparison of This Class with Alberta Education 

Special 
Education 

Code 

 
Meaning Of Code 

 
Number of 

Students in This 
Class with 

Identified Special 
Needs 

 
Number of Students 

in Alberta 
2006/2007 with 

Identified Special 
Needs5 

51 Mild Cognitive 
Disability 

1 7359 

54 Learning Disability 7 20 926 
80 Gifted and Talented 2 6408 
38 Assigned by School 

Jurisdiction 
1  

Overall Total  11 of 36 34 693 of 597 6746 
Overall Percentage 30.5% 5.8% 

 

                                                      
5 As reported by Alberta Education http://education.alberta.ca/admin/special/stats/bycode.aspx 
6 As reported by Alberta Education http://education.alberta.ca/ei/reports/eis1004_2007.pdf 
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The number of students in this class with identified disabilities is 24.7% above 
the provincial average.  While the provincial data is not disaggregated enough 
to compare this Grade 7 math class with other Grade 7 math classes in the 
province, we felt that this group of students, while homogeneous is many ways, 
represented a good environment in which to work with the principles of UDL.   
    
As we began working with these students we wanted to determine how the 
students felt about mathematics.   A quick survey by a show of hands revealed 
that a large number of the students in the classroom disliked the subject.  They 
said things like this: 

• “I get it but I don’t love it.”   
• Many said they couldn’t understand math because it made no sense.   
• Others couldn’t see any use for it: “Like when am I ever going to need 

algebra?  I’ve never seen that anywhere except in my math book.”    
 
A small group of students reported that they liked math.  Although the majority 
of students disliked math, many also reported that they thought they were good 
in math and they got good marks.   
 
 

 
The Classroom  
Getting the classroom ready to 
accommodate 36 adolescents was a 
daily undertaking.  Students changed 
classrooms every 45 minutes for 
different subjects.  The class just before 
this one had 23 only students.  
Mysteriously, every day tables and 
chairs disappeared from the room.  
Before each class the teacher, Mrs. 
Jamieson,7 would search throughout the  

Figure 2: Classroom 
 
wing of the school for the missing tables and chairs.  She would manage to 
recruit some passing student or teacher to help her carry the furniture into the 
classroom. Squeezing in a laptop cart of computers, a data projector and card, 
video cameras and tripods and three additional bodies made for even tighter 
quarters.     
 
This school had been selected as a pilot site for the first year of a laptop 
initiative in the school jurisdiction.  While the students used the laptop 
computers in their other courses, the laptop computers were used infrequently 

                                                      
7 A pseudonym for the teacher is being used in this report. 
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in the mathematics classroom.   Bringing a laptop cart into the classroom during 
this study added to the congestion and also created some initial confusion for 
students.  What did computers have to do with math? 

 
The Teaching and Learning Prior to this Study 
While Mrs. Jamieson has more than ten years of teaching experience, this was 
her first year teaching mathematics.  She volunteered to participate in this study 
because she saw it as an opportunity to learn.  She is an extremely 
conscientious teacher who cares deeply that her students not repeat her own 
school math experience. 
 

As a student, [I] struggled with math all the way through school and it 
wasn’t until I got to university that it actually started to click for me.  But, 
having said that, sitting in a classroom that has math delivered in ONE 
[emphasis hers] way: “Here it is, now do it, now hand it in and I’ll mark it.”  
I’m not sure that that reaches the majority of students.  I think it hits 
middle of the road, most of the kids get some of it, many of them get a 
little. 
 

However, Mrs. Jamieson noted that she relied heavily on the math textbook and 
worksheets to guide the content of her lessons. In describing the ways in which 
she taught the content she stated: 

 
I typically, given that this is my first year teaching math, talk to 
them about have they done it before, what do you know about 
it, here is an example, now you do one and then it’s a 
worksheet or something out of a textbook. 

 
What Mrs. Jamieson has just described is a lesson pattern that has been well 
documented by Stigler and Hiebert (1999).  First identified in the 1995 
International Association for the Evaluation of Education Achievement (IEA) 
Third International Mathematics and Science Videotape Study (TIMSS), this 
lesson pattern is known as the American teaching script.  The lesson pattern 
repeats in the following way: 

• Review previous material 
• Demonstrate how to solve problems for the day 
• Practice the demonstrated problem 
• Correct seatwork and assign homework 

 
In fact, so ingrained was this teaching script, that when teachers started to work 
with more robust, complex problems in the years after the 1995 TIMSS study, 
they transformed these “problems designed for teaching rich mathematical 
concepts into routine procedural exercises”(U.S. Department of Education, 
2004). 
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In addition to a patterned lesson script, theTIMSS 1995 videotape study 
revealed that U.S8. teachers stressed the development of problem-solving skills, 
while Japanese teachers stressed students’ understanding of underlying 
concepts.  More than 60 percent of U.S. teachers specified problem-solving 
skills as the goal of their lessons. More than 90 percent of Japanese teachers 
emphasized conceptual understanding over problem-solving ability.   
 
Between the 1995 and 1999 TIMSS studies, the United States applied 
extensive resources to developing the types of problems that “support 
mathematical proficiency” (Shanker Institute, 2005).  These are problems where 
students are asked to engage in mathematical reasoning by  

• looking for connections,  
• developing relationships, 
• searching for patterns, and  
• making conjectures.  

 
However well constructed the problems, James Hiebert reported that 
researchers found that in the U.S. 

there are essentially no problems that end up getting worked on in this 
making connections way.  Teachers often step in and do the interesting 
mathematical work for the students, probably because they sense 
students are confused or frustrated or getting antsy.  And so they think it’s 
their job to step in.  It’s not that they’re trying to subvert students’ learning; 
at least I’m convinced they’re not after talking with lots of teachers about 
this.  So this is an important finding for us in trying to understand what kind 
of teaching is going on in the U.S. and how it differs from high achieving 
countries.  (Shanker Institute, 2005).   

 
In the 1995 TIMSS videotape study, researchers found that in terms of lesson 
content in the United States, about 90 percent of student seatwork involved 
practicing routine procedures. In Japan, 41 percent of working time was spent 
on routine practice and nearly half the time was spent inventing new solutions 
and engaging in conceptual thinking.  Hiebert’s recent findings indicate, 
however, that although lesson content materials have changed in the United 
States since 1999, the lesson script has remained unchanged.  Problems 
designed to build mathematical proficiency have been turned into routine, 
procedural exercises. 
 
During our many conversations with Mrs. Jamieson, she frequently noted that 
this was her first year teaching math.  She attributed her style of teaching to 
this.  However, Mrs. Jamieson’s mathematics practice resonates strongly with a 
well-established pattern across North America.  Finding ways to break free of 
this teaching script so that students gain mathematical proficiency by engaging 
with robust, connections-types of problems is an issue facing most mathematics 
                                                      
8 Three countries: U.S., Germany and Japan participated in the 1995 TIMSS videotape study.  
Canada did not participated the 1995 or 1999 videotape studies. 
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teachers in the U.S. and Canada.  
 
 
 

UDL Design Principles In The Mathematics Classroom 

The pervasiveness of the North American script for teaching mathematics 
provides essential context as we start to focus on the potential for UDL in the 
mathematics classroom.  If fundamental principles of UDL become tied to a 
teaching script focused on practicing routine, procedural exercises, then 
mathematical proficiency for all students will not become a reality.  Designing 
mathematics learning for the UDL classroom and teaching mathematics in a 
UDL classroom suddenly get far more complicated than first imagined, for now 
it is not just the principles of UDL that need to be brought to bear, but also what 
research tells us about gaining mathematical proficiency. 
 
This point is of crucial importance in bringing UDL into the mathematics 
classroom.  If the ways in which mathematics is taught involves practicing 
routine procedures rather than building mathematical proficiency, then it matters 
little that teachers represent this information in multiple ways or that students 
have the opportunity to express these routine procedures in multiple ways.  The 
mathematics teaching remains fundamentally problematic. 
 
To relieve the monotony symptomatic of this routine teaching script, the 
educational community in North America has attempted to make math more fun. 
  

You’ll find one attempt after another, especially recently, to lure children 
into math by making it fun.  ‘Manipulables’ replace memorizing times 
tables; a pattern is discovered, and then another; shapes are folded; 
bells run; numbers dance.  All this has the welcome effect of not giving 
fear and loathing even a look-in: games become the arena where minds 
encounter math.  The problem usually is, however, that these encounters 
stay superficial—a decorative rather than an architectural instinct is 
catered to (Kaplan and Kaplan, 2007, p.131). 

 
This is not to say that there is no place for manipulatives in the mathematics 
classroom.  Rather, it is to insist that the mathematics is not contained in the 
manipulatives, themselves.  “For mathematics itself is the study of connections: 
how things ideally must and, in fact, do sort together—beyond, around, and 
within us” (Kaplan and Kaplan, 2007, p.5).    
 
A recent longitudinal design-based research study by Swain and Swan (2007) 
reported that  

some teachers believed that the approaches were about ‘standing back 
and letting the learners discover things for themselves’. … Some 
teachers became aware of the shortcomings of transmission methods of 
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teaching and recognised that ‘telling‘ was not always an effective way of 
helping learners to understand concepts. Perhaps in reaction to this, they 
moved to an extreme position of ‘not telling‘  (p.32 – 33). 

 
A teacher working with the principles of UDL in the classroom has the ability to 
represent any mathematical concept in multiple ways.  It is the conceptual 
understanding, which involves an understanding of concepts, operations and 
relations, that is focus of the instruction, not the number and types of 
manipulatives.  It is all too easy to slip into decorative forms of mathematics in 
the name of fun as alternatives to routine procedures.  When this happens, the 
students are frequently abandoned, left to “discover” the mathematics for 
themselves.  The result: students end up with the same lack of mathematical 
proficiency as those who formerly received an endless repetition of routine 
procedures. 
 
Teaching for mathematical proficiency (i.e., conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning and a productive 
disposition) requires that the teachers design a learning environment that 
provides “a solid foundation of detailed knowledge and clarity about the core 
concepts around which that knowledge is organized to support effective 
learning” (Donovan and Bransford, 2005, p.569).  The type of practice required 
to promote mathematical proficiency stands in sharp contrast both to 
transmission-type pedagogies and to discovery-type pedagogies.  Rather, the 
type of practice that builds mathematical proficiency requires that students be 
brought into a collaborative “relationship between different facts students are 
learning, between the procedures they are learning, and the underlying 
concepts” through robust, rich problems and investigations (Shanker Institute, 
2005, p.7).    
 
It is to this type of mathematical learning environment that the principles of UDL 
need to be tethered.   
 
 
 Designing the Geometry Study 
The instructional design of the study was created using the Galileo Educational 
Network’s design process.  This design process is part of an online professional 
learning environment called Intelligence Online9 (IO), so much of this work 
could be done online with only a few face-to-face meetings with the teacher.   
 
This instructional design process involves  

• identifying the understandings that students are to attain,  
• designing tasks, activities and lessons to sponsor the stated 

understanding,  
• mapping understandings, tasks and activities to the mandated Program 

of Studies to ensure that required outcomes are addressed,  
                                                      
9 IO can be found at www.iomembership.com 
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• creating assessment to both guide the student learning and to inform 
students what will count as evidence of learning, 

•  identifying the ways in which technology will support the learning, and 
• identifying the resources.  

 
The IO online environment permits the teacher to publish relevant parts of the 
planning to an external URL, making the instructional design public.  Students 
had ongoing, online10 access to the tasks, activities, assessment and resources 
throughout the study both at home and at school.    
 
We determined that all students should understand that: 

1. Geometry is the study of lines, shapes and spaces (objects); 
2. Dimensionality of the line (1D) translates into plane geometry (2D) which 

gives us insight into our home dimension (3D); 
3. There are multiple ways to describe geometric forms; 
4. There are multiple ways to measure the various geometric forms; 
5. Each of the geometric forms has various properties; and 
6. The inherent beauty in geometric forms is its symmetry 

 
The goal of a quality design is to develop and deepen student understanding of 
a particular topic.  Students will vary in the types of support systems they will 
need to do this.  Teachers need to vary the ways in which they represent the 
concepts.  Students need the opportunities to express their understanding of 
the concepts in multiple ways.  Teachers and students need to vary or 
differentiate the ways in which students engage with the concepts through the 
learning tasks.  But the understandings themselves are not differentiated.   
 
We used the following overview of the topics in Geometry to determine the 
ways in which the topic held together. 
 
 
 

                                                      
10 The design of the student tasks and activities can be found at www.iostudent.com/1993 
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Figure 3.  Topics in Geometry.  ( Milgram, 2005, p. 31) 
 
 
 
From this we created the following conceptual map of the Geometry terrain so 
we could see how the concepts were connected.  We also used this conceptual 
map to help us design the learning tasks and map to the relevant General 
Learner Expectations from the Program of Studies.   
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 Figure 4. Geometry Conceptual Map 
 
We provided students with a copy of this conceptual map at the beginning of the 
second week of the study. 
 
 

Lines, Shapes and Spaces – Task 
The first task was Lines, Shapes and Spaces.  Here is what we presented to the 
students.    
 

Everywhere we see lines, shapes and spaces. Working with a partner, 
you will need to: 

• Find lines, shapes and spaces in the classroom, school or outside 
of the school.   

• Take digital pictures of a variety of lines, shapes and spaces you 
find.  

• Download these pictures onto your laptop.  
• Sort through your pictures and decide on at least two from each 

category, 1-D, 2-D and 3-D that you want to examine in great 
detail. 

• Now, drag each of the pictures into a Word document.  (Make 
sure you save each one with its own name and in a place you can 
both access.) 

 
Working with your partner, name, describe, analyze and measure the 
various images you have collected.  
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Select a way to present your work that best expresses how you 
understand the ideas in this task.   

 

Lines, Shapes and Spaces - Assessment 
The following assessment rubric accompanied this first task. 

 

 
Figure 5. Assessment – Lines, Shapes and Spaces 
 

 
The Alberta Education Mathematics Program of Studies (2007) specifically 
states that 
 

the program of studies is arranged into four strands. These strands are 
not intended to be discrete units of instruction. The integration of 
outcomes across strands makes mathematical experiences meaningful. 
Students should make the connection between concepts both within and 
across strands.  (Alberta Education Mathematics Kindergarten to Grade 
Nine Program of Studies)   
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However, many teachers find that once they start down the list of General 
Outcomes accompanied by a long list of Specific Outcomes, thoughts of 
integrating outcomes is the furthest from their minds.  Guided by a long list of 
outcomes, teachers typically resort to finding ways to directly address each of 
them in turn.  Teachers who might want to integrate the various strands of 
mathematics have few resources or images to guide their planning, particularly 
in ways that create high quality mathematics teaching for all students.   
 
As we created the tasks, activities and assessments for this study, we  

• integrated the math strands of Number, Patterns and Shape and Space 
in accord with the intention of the Program of Studies; and  

• mapped tasks, activities and assessments to specific outcomes from the 
Program of Studies.  In that way, we ensured that required outcomes 
were addressed without tethering our instructional design to following a 
list in sequence, as is so often the case when teachers speak of 
“covering the curriculum”.    

 
Our goal was to create rich, robust math tasks (which could also be called 
problems or investigations). By this we mean tasks that  

• are accessible to all, yet invite students to be challenged to the highest 
levels; 

• invite students to make decisions; 
• involve students in speculating hypothesizing, conjecturing, explaining, 

justifying, proving, reflecting and interpreting;  
• promote discussion and questioning;  
• encourage originality and invention; and  
• have an element of surprise and enjoyment (Swain and Swan, 2007).   

 
A good task, problem or investigation is designed to involve students over a 
period of time, not just a single lesson.  Tasks of this sort can be described as 
the umbrella under which many other classroom activities cluster.  Well 
designed, these tasks remain constant throughout the unit or study. Inviting 
tasks, problems or investigations provide the context within which the 
development of mathematical proficiency becomes meaningful, engaging and 
enjoyable. 
 
We use the term activities to describe work that engages students at the level of 
the lesson.  Activities build the competencies required to complete the task, 
solve the problem or investigate the question in mathematically proficient ways.  
Activities permit teachers to assess, on an on-going basis, the extent to which 
students understand (or misunderstand) mathematical concepts and 
procedures.  Responsive teaching develops as students’ response to one 
activity shows the teacher what the next step needs to be in order for 
individuals, small groups or the entire class to progress.  
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As we started to work with the tasks and accompanying activities, we quickly 
discovered that all the students needed guidance in how to work with the new 
demands placed on them by the tasks.  Their initial responses indicated that 
they were not accustomed to:  

• working as a collaborative team,  
• listening to and building on each other’s ideas,  
• challenging each other’s thinking and conjectures, and  
• asking each other to justify their conclusions.   

 
It can be very frustrating for teachers to introduce what they have been told are 
mathematically better problems only to find that their students have no idea 
what is being asked of them.  We suspect that this frustration accounts, in part, 
for the tendency of teachers to revert quickly to the conventional teaching script 
to which they—and their students—are accustomed.   
 
In this study, the teacher was confused and disturbed by students’ initial 
struggles to name, describe, analyze and measure the lines, shapes and 
spaces they had photographed. Almost as soon as students began to discuss 
straight lines, for example, they bumped up against a genuinely mathematical 
problem: how can we prove that a line is actually straight?  The task had been 
designed to create precisely this kind of mathematical “bumping”, but the 
students were confused.  It just was straight.  And what was the problem with 
just saying that a rectangle has four sides, anyway? 
 
Initially, the teacher interpreted their difficulties in justifying their answers as 
trouble in the teaching.  And she was uncomfortable with rising levels of 
frustration as students were challenged to push their thinking.  Because she 
had so little experience in teaching mathematics, she could not see how to 
interpret the students’ difficulties or to help them out. 
 
Dr. Friesen had a very different reaction.  Seeing that students struggled even 
to name the lines, shapes and spaces that surrounded them, she recognized 
that even though they had encountered all the required terms in previous years, 
perhaps labeling them on worksheets or building them with manipulatives, 
students had not actually mastered the mathematical concepts that lie behind 
the labels and the relationships between 1, 2 and 3 dimensions. Asked simply 
to transfer what they had memorized to the actual world in which they live in a 
variety of ways, students were at a loss.   
 
And so she adjusted the next set of activities to take students back, helping 
them build both understanding and enthusiasm for the conundrums raised by 
seemingly simple questions.  It is important here to note, however, the spirit in 
which she did this, not blaming students for what they “should” have known, 
which often leads to punishment of the sort that requires students to do pages 
and pages more of the kind of work that had not served them well in the first 
place.  There was a time in human history when concepts of dimensionality did 
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not exist (at least, not in the form that we now know them).  What was the 
original problem for which geometry became the answer?  Why do people still 
devote their whole lives to its study?  And why should these students devote 
even a minute of their precious lives to learning it, too? (Kaplan and Kaplan, 
2007, p. 13). 
 
Discussing curriculum and teaching, Kaplan and Kaplan challenge educators: 

We certainly are still very far from understanding the relation between 
thought, mathematics, and the world; but our ignorance is no excuse for 
pretending to others that what took effort (and perhaps even well-
prepared luck) should now be obvious to all. 

 
Working with rich, robust tasks requires a particular type of mathematics 
teaching in order to keep the connections problem up and alive in the 
classroom.  
 

The mathematical knowledge needed for teaching is specialized.  It’s 
different from the mathematical knowledge required for other 
mathematically intensive work like physics or accounting or engineering.  
The mathematical demands of the work are specialized. (Shanker 
Institute, 2005, p.22).  

 
Most of the students, including those with disabilities, were unfamiliar with this 
type of mathematics teaching. For the first few days, they were noticeably 
confused, uncertain, guarded and yet mildly intrigued. Introducing a new way to 
learn mathematics to these students at the end of Grade 7 and after eight years 
of schooling that had been primarily focused on learning procedures and right-
answer-giving dislocated them temporarily.  It wasn’t until the second week into 
the study that we heard, “This was the coolest project ever.  It was cool 
because I have never done geometry this way before.”   
 
As Kaplan and Kaplan note (2007, p.9), few teachers are themselves taught 
that math has a history—“as if standing on the shoulders of giants meant we 
had no need to look down.”   In order to connect the terms students knew with 
actual human struggles to make sense of their world mathematically, Dr. 
Friesen invited them to think about what the words geometry meant. 

 
T.    “Does anyone know what Geometry means” 
S1.  “I’ll probably be wrong but…” 
 T.    “Go for it” 
S1.   “Like the area and perimeter of shapes and volume” 
T.     “Yes, what else.” 
S2.   “Different kinds of shapes and rulers.” 
T. “A ruler would be a type of a tool that you use in geometry.” 

 
Students continued to list various aspects of geometry.  They knew that words 
such as area, perimeter and volume belonged to such a study.  They also knew 
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that shapes such as triangles, rectangles and circles belonged.  They named a 
number of tools such as rulers.  However, when prompted to consider what a 
measure such as area might be good for,  or how we could be sure that a line 
was actually straight, the students were silent.  We found this somewhat 
perplexing, as many of these students were farm kids.  Planting, tilling and 
harvesting were part of these students’ experience.  The term geometry means, 
in fact, earth measure. 
 
Looking at the list, it was clear that the students knew many of the words 
associated with geometry.  But we were interested in how they had (or had not) 
made connections between the geometry they studied at school and their 
personal lives.  That is, we were looking for the ways in which they had 
transferred their school learning experiences elsewhere: 
 

Measures of transfer play an important role in assessing the quality of 
people’s learning experiences. Different kinds of learning experiences 
can look equivalent when tests of learning focus solely on remembering 
(e.g., on the ability to repeat previously taught facts or procedures), but 
they can look quite different when tests of transfer are used. Some kinds 
of learning experiences result in effective memory but poor transfer; 
others produce effective memory plus positive transfer.  (Bransford, 
Donovan and Cocking, 2000, p. 51). 

 
It was essential to probe the ways these students made sense of the terms that 
they had just contributed to the list on the board, which by this time they had all 
dutifully copied into their math notebooks.   
 
Finally a student said, “I think it was invented by the Greeks.”   
 
“Why?  What do you think the Greeks needed geometry for?” we asked.   
 
  “To build castles?” a student responded. 
 
“Yes, they used it for buildings.  For sure.  Do any of you know why else they 
might have needed geometry?” 
 
Silence.   
 
“Well let me tell you about the Greeks, the flooding of the Nile, the surveyors….”   
 
It was Dr. Friesen’s opening to tell the long-ago stories of this glorious math 
topic.  Students of mathematics need to know that it has a history that it comes 
from somewhere.  They need to know that the mathematics we encounter today 
was created by the minds of people to solve problems.  Sometimes these 
problems are practical in nature like resurveying the land after a flood, or 
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building a pyramid or a temple or calculating how much seed a farmer might 
need to plant an area of land.   
 
Students also need to know that sometimes mathematicians work with 
problems that appear to have no practical value at all.  These types of problems 
were worked on to discern something further, something quite perplexing, and 
something worthy of deeper inquiry, such as the length of the hypotenuse when 
the sum of the other two sides of the triangle equals two.   
 
For this group of students, this time around, Dr. Friesen decided to “back up” by 
providing a rich context within which to consider issues of the mathematical 
precision of geometry.  The stories were lovely in themselves, and went a long 
way to relaxing students into an imaginative space in which their struggles and 
questions become intriguing rather than a sign that you are just no good at 
math. 
 
Of course, it would be possible to introduce historical stories into classrooms 
that continue to be dominated by procedural scripts, a problem to which 
Mighton (2007) alludes.  In the same way that mathematical thinking is not 
contained in manipulatives and models, it is not contained in the stories, either.  
The teacher’s capacity to create, explore and sustain key connections makes it 
possible to respond to students’ emerging understandings in ways that are both 
mathematically and pedagogically sound. 
 
 
 
Multiple Means of Representation 
Instead of working with predominantly print-based resources that must be 
modified to meet the needs of individual students, students should have access 
to “multiple, redundant, and varied representations of concepts and information” 
(Rose, Meyer and Hitchcock, 2005, p. 25).  The term representation refers to 
the ways teachers organize or formulate content for classroom instruction to 
present key ideas and concepts to students.  For teachers, this is different from 
knowing the subject of mathematics for their own use; rather, creating or finding 
appropriate representations means knowing about the discipline of mathematics 
in ways that make it accessible to students.  

Mathematical ideas can be represented in a variety of ways: pictures, 
concrete materials, tables, graphs, number and letter symbols, 
spreadsheet displays, and so on. The ways in which mathematical ideas 
are represented is fundamental to how people understand and use those 
ideas. (NCTM, 2000, p.4) 

 
It is essential for teachers (1) to have a wide repertoire of mathematical 
representations and (2) to know how to establish the equivalence of these 
representations.  Some representations are especially powerful; others, 
although technically correct, do not open ideas effectively for learners.   



 36 

 
Each representation or model also requires different care in use in order to 
make the mathematical issues salient and usable by students (Cohen, 2005).   
This applies to all forms of representation: oral, written, pictorial, graphic and 
symbolic.   It is incorrect for teachers to assume that having more 
representations or models of concepts is all that is needed in the UDL 
classroom.  In fact, just having more might have the opposite effect and end up 
making the concept more confusing for the students.  Mighton (2007) levels 
precisely this criticism against textbooks commonly available for students.  
Pages are often a jumble of different ideas, exercises, suggestions, cartoons 
and models offered in the spirit of providing multiple entry points, but ill-
conceived in terms of how such differences relate to one another.  Rose, Meyer 
and Hitchock (2005) caution that, for special needs students, representations 
that engage an ADHD student could be terrifying for an autistic child.   
 
Rather, what matters most is the teacher’s ability to determine the 
appropriateness and the equivalence of each of representation.  In what ways 
does each representation get at the underlying concept? In what ways do the 
various representations connect with or relate to each other? If one 
representation does not work for a student, what are others that would serve 
better? 

Creating a representation is an act of pedagogical reasoning.  Teachers 
must first turn inward to comprehend the key ideas, events, concepts and 
interpretations of their discipline.  But in fashioning representations 
teachers must also turn outward.  They must try, as it were, to think 
themselves into the minds of students who lack the depth of 
understanding they, as teachers, possess. (Wineberg and Wilson, 1991, 
p.332-333). 

 
To see how this worked in our study we will work with one particular example, 
circles. 
 

Circles 
Initially the students thought we were just being difficult when we pushed them 
in the naming of circles.  After all, it’s round, so it must be a circle.  “Really?  
How can you be sure?” we asked.   

Learning technical names is sometimes disparaged as a rote activity, but 
such objections miss the point.  Technical names are usually not 
arbitrary; they encode the conceptual framework in which we organize 
the things we are naming.  (Senechal, 1990, p.145). 
 

What exactly is a circle?  Mathematics defines it in a precise way.  The idea that 
a circle is a set of points in a plane that are all an equivalent distance from a 
given fixed point is not trivial.  This definition gives rise to a number of important 
concepts.  In mathematics, names are much more than labels to memorize.  
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Names, definitions and terms facilitate reasoning about mathematical ideas. We 
already knew that memorizing definitions had little impact on these students’ 
mathematical understanding.  What we asked was for them to look at the 
shapes they had before them and to determine what made them all circles.  The 
ability to classify geometric forms is essential to Descriptive Geometry and 
essential to creating mathematical proficiency.   
 
As students started to describe their circles, matters of measurement became 
important.  And this gave rise to a number of misconceptions.  One of the first 
concerned the number Pi (3.16149….): the ratio of the circumference to the 
diameter of the circle.  These students had been using Pi and its symbol π since 
Grade 3.  Now in Grade 7, after being introduced to variables in algebra, they 
found themselves on shaky ground: 
 

S1.   Is the Number Pi always the same?  
T. Yes it is always the ratio of the circumference to the diameter.  

Which is always 3.14159… 
S2.  If the diameter changes does the circumference change?   
 

As you can see in the transcript above, we initially provided the student with a 
short answer to her question.  But then came the second question from another 
student and then another: “But what about really big or really small circles?”  “Is 
there a difference between the radius and diameter?”  “Why are the formulas for 
the circumference and the area of a circle different?”  
 
It wasn’t long before we realized that the students had some very strong 
misconceptions about area, circumference, π, radius, and diameter. 
 
This was one of those places where saw a pervasive misunderstanding of some 
very fundamental ideas about circles.  Both special needs and regular students 
were asking the same kinds of questions.  It was clear that they had memorized 
terms without also acquiring the ability to reason mathematically with them.   
 
It is at this point that the strength of design-based research becomes apparent. 
Had the research team maintained a hands-off distance from instruction, they 
would have observed whether, or how, the teacher was able to adjust her 
teaching to this new situation.  If, as was the case with Mrs. Jamieson, she 
lacked the experience or background knowledge to take the next steps, the 
research team might have drawn the conclusion that students of mixed ability 
founder when asked to engage in sophisticated ways with mathematical 
concepts.  Objectivity of this sort would have missed the very point of research 
interest.  
 
Design-based research is sensitive to local conditions.  It mattered that these 
particular students did not understand concepts related to circles.  How they 
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responded to various activities, their conversations, their confusion and their 
insights determined how the research team constructed the next day’s activities.  
By closely interacting with the students throughout each of the classes, side-by-
side through dialogue, we could hear and see what sense they were making of 
the various concepts. In that way we could be deeply sensitive to the ways in 
which they did or did not understand. From what they were saying and doing, 
we designed our next steps.  Among other things, we could see what types of 
representations we needed to create to help build or strengthen their 
understanding.   
 
Planning the initial intervention, we had no way of knowing that students would 
founder conceptually around circles.  When it happened, we had to scrap tasks 
and activities we had planned in advance in favor of building understanding 
right then and there. 
 
It would be tempting to think of this as back-tracking, or re-teaching and 
perhaps even to blame the students for forgetting what they had been taught in 
previous years.  But following principles outlined in this report, we welcomed the 
discovery of areas that required the creation or strengthening of conceptual 
understanding.  While no design process can anticipate when such 
misunderstandings will show themselves, our ways of constructing tasks, 
activities and assessment ensure that if students misunderstand key concepts, 
we will see it.  In this way, problems of understanding do not become occasions 
to label students, nor to exclude them from conversations about important 
ideas.  They become, instead, opportunities to provide additional support, 
representations, conversation and exploration.   
 
And given the importance of circles to geometry, we were confident that every 
student from gifted to learning or cognitively impaired would find just the right 
level of challenge to their thinking.  No student would be left waiting for the 
others to catch up. 
 
We designed a number of representations to help the students describe, 
analyze and measure circles.  Our goals in creating these various 
representations were not so very different from those of the ancient Greeks.  
We wanted the students (1) to investigate the similarities and differences 
among shapes and objects, (2) to analyze the components of form, and (3) to 
recognize different representations of shapes in ways that made sense and 
created connections.   
 
The three principal, and interrelated tools in geometry are: 

• Classification, which is attained through rich descriptions,  
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• Analysis, which is attained through decomposition, and  
• Measurement.   

 
These three tools are also closely tied to symmetry, which is used both to 
analyze and classify 2D and 3D.  We needed all students to understand that 
about geometry. Had there been students with physical or other impairments, 
we would have also ensured that the representations we provided made these 
tools and concepts accessible to them.  The point is not to provide all possible 
representations on every occasion.  Rather, it is to exercise pedagogical 
judgment about what will serve best this time around.  Often one representation 
of the mathematics may be better suited than another to solve the problem or to 
make an explanation clear. 
 
One of the activities we designed involved using the tools important and 
available to the ancient Greeks.  We had the students construct line segments, 
construct circles using the length of the line segments, and identify diameters 
and radii using only a compass and straight edge. For some students this was 
exactly the representation that they needed to make sense of the concepts 
related to circles.  In fact, these students went far beyond the demands of the 
activity.   
 
While intrigued with the exercise, some of the students didn’t make the 
necessary conceptual connections.  In fact, many students, particularly, but not 
exclusively, the students with identified learning disabilities, found working with 
a compass and straight edge quite frustrating. These students didn’t have the 
manual dexterity needed to work with a compass.  For other students, the 
compasses posed a significant problem because the school issue tools lacked 
screws that would hold the pencils securely.  
 
We had anticipated that this might happen, so we had prepared a similar activity 
using a dynamic geometry application called First, we knew we would likely 
need to accommodate learning difficulties. Geometers Sketchpad is, in this 
sense, a powerful AT for special needs students who lack either the manual 
dexterity or the patience to create precise and accurate constructions. And in 
other contexts, we have seen teachers give some students access to 
Sketchpad as an enrichment activity to engage them while the rest of the class 
caught up. 
 
But the use of this application was more than adapting to learning differences 
(or even to the poor quality of compasses provided for students).  It introduced 
opportunities for students to explore different representations and to make 
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connections between them.  And this is a key element of mathematical 
proficiency: 

A significant indicator of conceptual understanding is being able to 
represent mathematical situations in different ways and knowing how 
different representations can be useful for different purposes. To find 
one’s way around the mathematical terrain, it is important to see how the 
various representations connect with each other, how they are similar, 
and how they are different. The degree of students’ conceptual 
understanding is related to the richness and extent of the connections 
they have made.  (Kilpatrick, Swafford and Findell, 2001, p.119). 

 

We also provided the students with the option of using MathsNet 
(http://www.mathsnet.net/campus/construction/circleonly.html) or Virtual 
Manipulatives (http://nlvm.usu.edu/en/nav/frames_asid_282_g_3_t_3.html) to 
work through the various activities.     
 
It is important to keep in mind here that the concepts were not, themselves, 
changing or being in any sense “dumbed down” in this variety of representation.  
That is, the learning goals remained constant for all students.  Rather, by 
representing these concepts in different ways, students were given 
opportunities to use different solution methods, and thus to develop multiple, 
flexible expressions.  The variations in their approaches, solutions and ideas 
would provide an opportunity for the class to discuss the similarities and 
differences of the representations and expressions, the advantages of each, 
and how they must be connected it they yield the same answers.    
 
We had anticipated that (1) some students would come to the conceptual 
understandings by creating the constructions using compass and straight edge 
and (2) for others the physical act of creating these constructions would get in 
the way of developing mathematical proficiency. It quickly became apparent that 
had we insisted that everyone use only their geometry sets to create the 
constructions, problems with the tools could have been misread as inability to 
build conceptual understanding—particularly for those students with identified 
learning difficulties 
 
All students had the opportunity to work with Geometers Sketchpad and many 
of them chose to do so.  Dynamic geometry software provided them with 
opportunities to:  

• create and test out their ideas and conjectures;  
• identify what variables were in play; 
• speculate about what would happen if they changed those variables; 
• create visual proofs, and 
• engage in rich, mathematical dialogue with each other to justify and 

defend their emerging understandings.  
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The ease with which the software permitted these kinds of investigations 
provided immediate feedback from the environment, itself—a key factor in 
learning. Suddenly, those students who struggled with manual constructions 
were able, as well as the more dexterous, to engage with the ideas of Euclid’s 
postulates.  They were no longer relegated to the position of just watching their 
more conventionally able classmates make progress. 
 
We have included two of the activities we provided for the students, to provide a 
sense of the various representations the students had available to them.  
Students downloaded the Sketchpad demonstrations and exercises from a 
website11 we had created for them.   
 

 
Figure 6.  Circumference and Diameter.  Demonstration and exercise for 
students investigating the relationship between circumference and 
diameter using Geometers Sketchpad.  

 
 
  

                                                      
11 This website was in addition to the wikispace and http://www.iostudent.com/1993.  However, 
students could access this website directly from a link in the IO website which they were used to 
accessing daily. 
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We placed a number of probing questions for the students directly onto 
the Sketchpad page.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Circle Concepts.  Demonstration and exercise for students 
investigating concepts related to circles using Geometers Sketchpad.  
As concepts became more complex, we provided the students with hints 
and more than one way of exploring the concept through the application.  
They could choose their own learning path through the investigation.   

 
 

All students had access to a variety of resources.  We identified: Math Open 
Reference (http://www.mathopenref.com) and WebMath 
(http://www.webmath.com) as good online resources.  We also reminded the  
students that their textbook was also a good resource; however, none of the 
students really believed us or took the opportunity to access their textbooks in 
this way.  In fact, one student looked at us, somewhat confused, “Why do you 
keep saying that?  A textbook is for doing questions, not a resource.” 
 
We taught alongside the students as they worked through their various 
problems.  In this way we were able to:  

• address misconceptions as they arose; 
• provide specific, dynamic feedback to guide the students learning; 
• provide a different representation should they be having unproductive 

difficulty with the one they were using; 
• make connections between the representation they were currently using 

and one they had used before or one that the team next to them was 
using; 

• engage students in dialogue to advance their ability to reason 
mathematically; 
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• discern what needed to be brought forward to the entire class for 
discussion; 

• determine our next day’s activities. 
 
An unexpected outcome of building in such flexibility was that students were 
initially uncomfortable working with the different representations.  As they 
looked across the classroom, they saw some students using geoboards; others 
using the virtual manipulatives online site; others using compass, protractor and 
straight edge; and still others using Geometers Sketchpad.    
 
They started to ask why their work looked different from others’ work, and they 
were unhappy.  If they were doing it right, shouldn’t everybody’s solutions be 
the same? 
 
 
Multiple Means of Expression 
Rose, Meyer and Hitchcock (2005, p.35) describe a UDL curriculum as one 
which provides “flexible models of skilled performance to learn from, 
opportunities to practice skills and strategies in a supportive environment, 
relevant and ongoing feedback, and flexible opportunities for demonstrating skill 
using a variety of media and styles.” 
 
From this perspective, schools should provide all students with as wide a 
range as possible of means to express what they know.  In the 
mathematics classroom, students have not typically had the opportunity 
to express their thoughts and ideas in multiple ways.  As revealed by 
TIMSS 1995, 1999, students are typically presented with one way to 
solve problems or practice procedures.  Their job is to practice that one 
procedure until it becomes routine.  And it is exactly at this place that we 
started to hear, “Can’t we just answer questions from our textbook?  The 
work in the textbooks is way easier”  “I like just answering questions on a 
worksheet.”  “How come we have to think?”  “I don’t know what numbers 
to put into the calculator to get the answer?”  
 
For many teachers, such growing discontent is disconcerting. In fact, at 
this point the students themselves can convince a teacher to go back to 
more familiar, routine procedures.  However, procedural fluency within 
mathematical proficiency does not mean the rehearsal of skills to perform 
routine procedures.  Rather, it refers to (1) knowledge of procedures, (2) 
knowledge of when and how to use them appropriately, and (3) skill in 
performing them flexibly, accurately, and efficiently (Kilpatrick, Swafford 
and Findell, 2001). Such procedural fluency is extremely important.  

When skills are learned without understanding, they are learned 
as isolated bits of knowledge.  Learning new topics then becomes 
harder since there is no network of previously learned concepts 
and skills to link a new topic to. This practice leads to a 
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compartmentalization of procedures that can become quite 
extreme, so that students believe that even slightly different 
problems require different procedures. That belief can arise 
among children in the early grades when, for example, they learn 
one procedure for subtraction problems without regrouping and 
another for subtraction problems with regrouping. Another 
consequence when children learn without understanding is that 
they separate what happens in school from what happens outside. 
(Kilpatrick, Swafford and Findell, 2001, p.123) 
 

Too frequently, in school mathematics, conceptual understanding and 
procedural fluency compete with each other for attention creating a false 
dichotomy.   

For example, it is difficult for students to understand multidigit 
calculations if they have not attained some reasonable level of 
skill in single-digit calculations. On the other hand, once students 
have learned procedures without understanding, it can be difficult 
to get them to engage in activities to help them understand the 
reasons underlying the procedure. (Kilpatrick, Swafford and 
Findell, 2001, p.122) 

 
Ball and Bass (2003) demonstrate the ways in which a student solves 
(expresses), a very ordinary calculation provides the teacher with a great 
deal of knowledge about how the student understands the concepts 
related to two digit by two digit multiplication.   
 

 
 

Figure 8: Three different ways to multiply.  (Ball and Bass, 2003, 
p.7). 

 
 

In these terms, it makes no sense at all to deny any student access to the 
widest possible expressions of knowledge.  And it makes even less sense to 
restrict what students can do to assignments, work sheets, multiple choice tests 
and uniform assessment measures that involve the rehearsal and regurgitation 
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of fragmented, memorized bits.   Welcoming multiple expressions yields insight 
into individuals’ number sense, not just their procedural fluency.  And it provides 
the opportunity for discussion and debate about the underlying concepts 
represented by each of the different methods. 
 
That is how understanding is built. 
 
Increasingly, students need to develop sophisticated and multiple ways to 
express solutions to problems. When one solution is a barrier to knowledge 
building, whether through an individual’s disability or through the inadequacy of 
the medium to the complexity and richness of the idea under construction, then 
students need to know that they can find more effective ways to build 
mathematical proficiency. 
 
This principle lies at the heart of UDL in the mathematics classroom. 
 
But it was not initially easy for the students to live this tension. 
 
During the second week, the students started to realize that we actually wanted 
to hear how they were making sense of the mathematical ideas.  Questions 
such as “Tell us how you solved that problem?” was not a criticism.  Instead, it 
was a question that would be taken up with all seriousness for the benefit of all.  
  
One student solved the problem of finding the area of triangles between two 
parallel lines with fixed bases this way: 
 

 
Figure 9:  Finding the area of triangles using geoboards. 
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And another student solved it like this: 
 

 
Figure 10:  Finding the area of triangles using dynamic geometry 
application. 
 

Our conversation was about how these two different expressions of the area of 
triangles were, in fact, similar and connected.  We looked at how and why the 
base in each of these was three and the heights of each of the, now six 
triangles was five.  Once the students were are able to see this, they were able 
to focus on why and how the area for all the triangles had to be the same. 
 

They recognize that the process is as important as the right answer. 
They now understand that what I can prove that is, as right as what 
you are saying or I understand why that is right. I think that is more 
valuable and I think that’s the ‘stuff’ that’s going to make a difference 
for them in geometry down the road. (Teacher interview) 

 
In working with technology-rich, multiple and varied representations and 
expressions, we wanted students to recognize that a mathematical community 
is one in which differences are valued because of the opportunities they provide 
for explanations, justification, debate and exploration.  Being good at math had 
come to include care and respect for others:  listening, hearing, seeing; 
collaborating, building on, and challenging each others’ ideas.   
 
Being good at math was starting to mean far more, now, than finding the right 
answer quickly and in the way that everyone else found it, too. 
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Upsetting The Natural Order 
During these class discussions, particularly towards the end of the second 
week, something quite unexpected surfaced. As we anticipated, it was 
becoming increasingly difficult to identify the nine students who were “coded” as 
having learning disabilities. They accessed the same learning curriculum, were 
given the choice and support to express their learning using methods of their 
choice and they were not isolated from the their peers.  
 
Many of the questions during the open discussion times came from the “coded” 
students. Concepts such as Pi, circumference, area and perimeter intrigued 
them. They questioned with confidence, added their thoughts to the general 
discussions, and became active participants in their own learning.  That is, 
students who typically had difficulty understanding mathematics, those for 
whom mathematics typically didn’t make much sense, started to speak up.  
 
What we did not anticipate was the extent to which their increasing proficiency 
temporarily bothered some of the students who saw themselves, or were seen 
by others as being good at math.  They protested:   “Hey, how do you know 
that?”  “You don’t get math.”   Then in quiet, hushed conversations, out of what 
they thought were the ears of the teacher and researchers, their complaints 
grew.   
 
It wasn’t fair that the coded kids were getting math. Fortunately, this attitude 
changed as they realized that learning in this way was not a competition.  Too 
often, when marks are used as a sorting device, achievement becomes a zero 
sum game: the advance of some is gained at the expense of others.  As 
students’ engagement increased, they lost this fear. 
 
Initially, the academic order of the classroom was disrupted, a social order 
created by conventional educational structures and processes and their 
organizing principles and assumptions.  It is beyond the scope of this study to 
determine whether the reactions of these students would be in any way typical 
of other classrooms when those who “everyone knows” are left behind suddenly 
emerge as equally able and engaged.  For now, however, we are comfortable 
noting two things. 
 
First, “equality is—and must continue to be—a key goal of any public education 
system”; however, “we need new ways of thinking about equality, ways that do 
not involve sameness, or one-size-fits-all approaches” (Gilbert, 2005, p.102).  
And it would appear that one of those new ways of thinking may involve re-
interpreting the unintended consequences of meeting individual needs by 
identifying some students as inherently less able than others when, in fact, their 
perceived disabilities are to some extent artifacts of our own structures and 
pedagogies.  UDL has the potential and the possibility of being one of these 
new ways. 
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Second, it may be important to examine the history of mathematics as a 
gatekeeper subject that has traditionally been used to separate the 
academically able sheep from the less talented goats.  Some members of the 
community of mathematics educators and researchers (Mighton, 2007; Kaplan 
and Kaplan, 2007; Swain and Swan, 2007) have been working to expose what 
they call the myth of mathematical talent as the primary way to explain why 
some students “get” math and others do not.  At a recent conference at the 
Mathematisches Forschungsinstitut Oberwolfach, Germany, Dr. Friesen 
observed the emergence of educational policies in several countries aimed to 
identify and stream the mathematically capable from those deemed as early as 
Grade 3 to be incapable of understanding pure or academically-oriented 
mathematics. 
 
We began this report with the account of a conversation with an individual from 
Alberta Education concerned that Alberta not stand still in terms of improving 
mathematics education in the province.  Here, we would note how striking is the 
Canadian (and Albertan) concern to give as many students as possible access 
to robust learning experiences that develop genuine mathematical proficiency.  
Our study demonstrates that in a short time, even in a classroom with a 
disproportionately large number of coded students, it is possible to raise both 
ceiling and floor simultaneously. 
 
Choosing to do so becomes, then, a matter of policy.  How badly do we want 
equality for all students, and are we prepared to weather what may be inevitable 
storms from the highest levels right down to the playground?     
 
 
 
Multiple Means of Engagement 
Students who are engaged have volunteered to give their attention to and 
interest to the learning task (Rose and Meyer, 2002).  
 
In this study, we were interested in looking at the extent to which students 
became engaged and volunteered to give their attention and interest to 
geometry.  The examples contained in this report demonstrate what such 
engagement looks like.   
 
Engagement is not an attribute of the individual (as in, Alice has problems 
engaging with her school work), although many teachers think of it in this way.  
Nor is the ubiquitous “time on task” that so often results in teaching-as-
management.  In other contexts, we have had experience of teachers who 
design or assign work for students, then monitor whether or not they are doing 
what they are supposed to.  We worry, in fact, that an unintended consequence 
of emphasizing multiple forms of representation could be that such teachers 
increase the numbers and types of activities as their main way of “doing” UDL.   
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Engagement doesn’t mean answering the even numbered questions or trying 
every suggestion in the textbook.  Rather, it seems to have at least two 
attributes we saw emerge in this class: 

• Increased willingness to spend time exploring a question or idea.  
• Increased enthusiasm for ambiguity and uncertainty. 

 
Fast-right-answer-giving works against both elements of engagement.  When 
students come to see mathematics as arriving quickly at the same answer in the 
same way as everyone else, differences in approach or challenges from others 
are seen as error. 
 
As Kaplan and Kaplan note, (2007, p. 48),  

mathematics is pervaded by ambiguity.  For what is an equation but the 
confronting of two points of view? To say that the square on the 
hypotenuse is also the sum of the squares on a right triangle’s two legs is 
the beginning, not the end, of deep insight. 
 

Thus, in our earlier examples of the definition of a circle, or finding different 
expressions for the area of a triangle, the precise definition of a term is not 
simply the application of a label, nor is the calculation of area only the 
application of a memorized procedure.  Discovering how concepts are related, 
how things apparently different are connected by “startling unities behind the 
flicker of appearances” (Kaplan and Kaplan, 2007, p. 48) catches our attention 
and engages our interest.  “How can this be?” a student might ask.  Or, “I never 
knew circles and triangles were connected!”  This, we would argue, is 
characteristic of mathematical confidence and proficiency.   
 
Too often students with learning difficulties collapse under the strain of the 
unexpected.  For them, ambiguity is a threat, not a charm.  What is needed is 
what Kaplan and Kaplan (p. 48) call “attention without tension”: 

walking through an inviting landscape, taking in its foggy valleys and 
cloudy peaks, pausing for views that seem to unify and views where 
everything falls or rises away.  Like good explorers, we’re willing to put 
up with a bit of uncertainty in our situation for the adventure of it all…. 
 

Student interest and engagement increased in precisely these ways throughout 
the study. Digital media engaged the students and although somewhat 
distracting in the beginning it was the challenge, support and flexibility of the 
tasks that eventually engaged the students.  
 

A Matter of Time 
The constraints of 45 minute blocks of time became evident very early in the 
study. No sooner had students settled into productive work than the bell rang, 
signaling a change of class.  Frustration started to build for both the students 
and members of the research team. 
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The tasks and activities required time.  The students needed time to dialogue 
with each other, to explore concepts in depth, to think and reason without 
interruption and to test conjectures and justify solutions. By the time students 
settled in from their previous class, they were left with approximately 30 minutes 
to become engaged in a demanding math task. 

The effectiveness of mathematical teaching and learning is a function of 
teachers’ knowledge and use of mathematical content, of teachers’ 
attention to and work with students, and of students’ engagement in and 
use of mathematical tasks. Effectiveness depends on enactment, on the 
mutual and interdependent interaction of the three elements—
mathematical content, teacher, students—as instruction unfolds. The 
quality of instruction depends, for example, on whether teachers select 
cognitively demanding tasks, plan the lesson by elaborating the 
mathematics that the students are to learn through those tasks, and 
allocate sufficient time for the students to engage in and spend time on 
the tasks. (Kilpatrick, Swafford and Findell, 2001, p.8-9).        

 
At the beginning of the second week, Mrs. Jamieson changed the schedule so 
they now had 90 minute blocks of time for mathematics.  The research team 
initially thought that the students might protest as this meant giving up a 15 
minute personal break.  However, there were no protests.  With the additional 
gift of time, the research team observed students’ increased willingness to 
spend time exploring a question or idea and increased enthusiasm for ambiguity 
and uncertainty.  They repeatedly saw the depth of thinking and understanding 
evident in the following  (Figure 11) artifact of students’ work. 
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Figure 11:  Student work - Lines 
 
Gaining mathematics proficiency (conceptual understanding, procedural 
fluency, strategic competence, adaptive reasoning, and productive disposition) 
using multiple, flexible means of representations and multiple, flexible means of 
expression requires sustained blocks of time longer than 45 minutes. 
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Assessment 
The value of assessment for learning, that is formative assessment, is 
becoming more widely recognized (Black and Wiliam, 1998; Davies, 2002-2003; 
Stiggins, et al, 2004; Bransford, Donovan and Cocking, 2000).  

Professors Paul Black and Dylan Wiliam synthesised evidence from over 
250 studies linking assessment and learning.  The outcome was a clear 
and incontrovertible message: that initiatives designed to enhance 
effectiveness of the way assessment is used in the classroom to promote 
learning can raise pupil achievement (Assessment Reform Group, 1999, 
p.4). 

In their 1998 study, Black and Wiliams found evidence to show that assessment 
practices which increased pupil achievement were weakly developed in the 
majority of classes.  They attributed this to three factors: 

• the assessment methods that teachers use are not effective in promoting 
good learning 

• marking and grading practices tend to emphasize competition rather than 
personal improvement 

• assessment feedback often has a negative impact, particularly on pupils 
with low attainments who are led to believe that they lack ‘ability’ and are 
not able to learn      (Black, 2004, p.1)     

Black (2004) reports that much confusion exists regarding the type of 
assessment that actually increases student learning and achievement.  He 
notes that misunderstandings arise when teachers think that teacher-made 
tests and student portfolio assessments can be used to improve student 
learning.  They cannot because they are put together at the end of a piece of 
learning.  Assessment for learning occurs while the learning is taking place.   

 In designing the pedagogical interactions in this study, researchers placed a 
strong emphasis on assessment for learning, defined as  

any assessment for which the first priority in its design and practice is to 
serve the purpose of promoting pupils’ learning. It thus differs from 
assessment designed primarily to serve the purposes of accountability, 
or of ranking, or of certifying competence. An assessment activity can 
help learning if it provides information to be used as feedback, by 
teachers, and by their pupils in assessing themselves and each other, to 
modify the teaching and learning activities in which they are engaged. 
Such assessment becomes ‘formative assessment’ when the evidence is 
actually used to adapt the teaching work to meet learning needs. (Black, 
et al. 2002, p.2-3).  

 
The research team employed various forms of assessment for learning: 
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• Sustained dialogue with students.  A great deal of effort went into 
examining the geometric mathematical territory by Dr. Friesen so she 
could engage students in dialogue around questions that were worthy 
mathematically and which could assist students in making connections, 
developing reasoning and building mathematical proficiency.   

• An analytic trait rubric made available to the students before the study 
started and constantly available to the students throughout the study at 
(www.iomembership.com/1993). 

• Specific daily feedback, both written and oral from the research team and 
from each other around identified criteria that were open and readily 
available.   

• The dynamic geometry application also provided the students feedback. 
Students got immediate feedback from the dynamic geometry application 
when a construction wasn’t working as they had intended it to. 

• Daily reflections by the students, Mrs. Jamieson and the research team 
members. 

 
The research team created a number of environments and ways to record the 
students’ written work.  Because so much of that work was digital, the research 
team created a wiki (http://gr7math.wikispaces.com).  They also requested that 
the jurisdiction’s information technology department provide the students with 
email accounts.  In this way, members of the research team could provide the 
students with additional written feedback and respond to the students’ 
reflections.   
 
However, access to school email both at school and at home was less than 
desirable.  While most of the students were able to successfully set up and 
access their email account, the school network was so slow that sending 
attachments was impossible.  Without the ability to attach documents to email, 
the research team abandoned the idea of using email.  Not daunted, the 
research team decided that they would have the students save their documents 
into a common shared folder from which the research team would then 
download the documents after class.  However, this too failed, as it took too 
long for the students to save the documents into the common folder on the 
network.  Next, they attempted to have students print their documents.  No go 
most days!  The printers in the school did not have enough toner to create a 
clear enough image to read.  So the research team focused strongly on 
providing strong, ongoing oral and written feedback individually and to small 
groups. Dr. Friesen also built a large group conversation into each day so 
students could test out their ideas, listen to other students emerging 
understandings, build on other students’ ideas and seek clarification.   
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The analytic trait rubric that was used to guide the student learning was also 
used at the end of learning as summative assessment.  Students worked with 
their team members to assess their final task performance.   Having worked 
with the rubric throughout the learning task, they knew what criteria they were 
working towards.  Students were able to accurately self assess their work.  Both 
student self-assessment and researcher/teacher assessment placed most 
students in the top two levels. 
 

 
Figure 12: Student Summative Self Assessment 
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Achievement As Measured By A Standardized Test 

One of the goals of this research study was to determine the academic 
achievement of a diverse group of students in a Grade 7 mathematics 
classroom through a statistically valid and reliable pretest and to determine the 
academic achievement of the same group of students through a statistically 
valid and reliable post-test.  As indicated previously in this report, the research 
team selected four task questions from PISA 2000, 2003, 2006: Continent Area, 
Carpenter, Farms and Twisted Building12.   While the students in this study were 
younger than students selected to write PISA mathematics examinations, the 
researchers were interested in finding test items that were  

• reliability and validity tested (Adams & Wu, 2002);  
• designed to assess conceptual understanding and procedural fluency; 
• organized contextually in order to facilitate problem solving or strategic 

competence.  
 
PISA tests are designed to test various mathematical competencies: 

• Mathematical thinking and reasoning 
• Mathematical argumentation 
• Mathematical communication 
• Modeling 
• Problem posing and solving 
• Representation 
• Using symbolic, formal and technical language and operations 
• Use of aids and tools 
 

“PISA does not use tasks that access the above competencies individually.  
When doing ‘real mathematics’ it is necessary to draw simultaneously upon 
many of these skills” (OECD, 2000, p.83).   
 
The following is an analysis of student performance on each of the task 
questions and an analysis of their total performance on the pretest and posttest.  
Our analysis consisted calculating the mean, standard deviation and standard 
error.   We compared the pretest to the posttest on each of these measures.  To 
determine the size of the variation within the group of students taking the same 
test we ran a paired-sample t-test for non-independent samples.  This was used 
to determine if there was a significant difference between the means of each 
sub-unit of instruction and the total scores. The t-test tests the statistical 
significance of the difference in the two means.  Specifically, instead of treating 
each group separately, and analyzing raw scores, the paired-sample t-test for 
non-independent samples allowed us to look only at the differences between 
the two measures, the pretest and posttest for each of the groups of students to 
                                                      
12 These tasks were released in December 2006 in a document called PISA Released Items for 
Mathematics which can be found at www.oecd.org/dataoecd/14/10/38709418.pdf 
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determine whether we had a statistically significant different in achievement 
between the pretest and posttest results. By subtracting the first score from the 
second for each subject and then analyzing only those "pure (paired) 
differences," we were able to exclude the entire part of the variation in our data 
set that results from unequal base levels of individual students.  By requiring a 
higher value to reject the null hypothesis, the t-test makes adjustments for 
smaller sample size (Gay, Mills, & Airasian, 2006). The researchers selected an 
alpha level of .05 for all statistical tests. 
 
 
1. Task One: Continent Area task  

The Continent Area task requires students to identify an appropriate strategy 
and method for estimating the area of an irregular and unfamiliar shape, and 
to select and apply the appropriate mathematical tools in an unfamiliar 
context.  Students need to choose a suitable shape or shapes with which to 
model the irregular area (for example, approximating parts of the map with 
rectangle(s), circle(s), triangle(s).  Students need to know and apply the 
appropriate formulae for the shapes they use; to work with scale; to estimate 
length; and to carry out a computation involving a few steps. 

 
Table 4 below shows how the students performed on the Continent Area 
Task pretest and posttest. 
 

Table 4: Mean Scores for Continent Area Task 
Paired Sample - 
Continent Area task N Mean 

Std. 
Deviation 

Std. Error 
Mean 

LD Coded Pretest 7 1.00 0.82 0.31 
LD Coded Posttest  7 1.29 0.95 0.36 
Not-Coded LD Pretest 20 1.10 0.85 0.19 
Not-Coded LD Posttest 20 2.10 1.33 0.30 

All Students Pretest 27 1.07 0.83 0.16 
All Students Posttest 27 1.89 1.28 0.25 
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The graph below (Figure 13) shows an increase in mean scores between 
Continent Area task pretest and posttest. 

 

 
Figure 13: Mean Scores for Pretest-Posttest for Continent Area task 

 
 

The data in Table 5 below indicates that the mean on Continent Area task 
scores was significantly different for Not Coded LD student and for all 
students.  However there was not a significant difference between the 
pretest and posttest scores for the Coded LD students. This difference on 
the pretest and posttest scores represents a significant improvement in 
achievement for the Not Coded LD students and for the class as a whole.   

 
Table 5: Paired Sample t Test Results for Continent Area 

Task 

Paired Sample t-test t df 
Sig. (2 
tailed) 

Mean 
Difference 

Coded LD -1.00 6 0.36 -0.29 
Not Coded LD -3.34 19 0.00 -1.00 
All Students -3.41 26 0.00 -0.82 

 
The Continent task is a particularly difficult, demanding a high level of 
competency, including the ability to calculate area by using scales.  In the 
PISA test, this task is given a difficulty level of 712, one of the highest levels 
assigned to tasks.  The researchers are impressed that all students 
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demonstrated at least some degree of increased ability to perform such a 
demanding task after the four-week study. 
 
During the study, some students worked with scale while measuring some of 
the images they took. Many students did not.  Many students chose to 
measure the actual object rather than determine the scale represented on 
their image.  In addition to scale, this task required students to calculate the 
area of an irregular shape—the continent of Australia.  Students were 
required to analyze this shape by decomposing it into constituent shapes: 
triangles, rectangles and squares to calculate the area.  Once this was 
accomplished they needed to calculate measures of all the constituent 
shapes adding them altogether to arrive at a reasonable estimate of land 
area.   
 
As the following Farm Task indicates, the Coded LD students developed 
proficiency in calculating area; however they may have experienced 
confusion in recognizing that all the smaller shapes needed to be added 
together to determine the whole. When examining the actual tests, 
researchers noted that all students divided the irregular landmass into 
smaller shapes.  On further examination of the actual tests, it is obvious that 
scale caused these students difficulty.   

 
 
2. Task Two: Farm Task  

Students are given a mathematical model (in the form of a diagram) and a 
written mathematical description of a real-world object (a pyramid-shaped 
roof) and asked to calculate one of the lengths in the diagram.  This task 
requires students to work with a familiar geometric model and to link 
information in verbal and symbolic form to a diagram.  Students need to 
visually “disembed” a triangle from a 2-dimensional representation of a 3-
dimensional object; to select the appropriate information about side length 
relationships; and to use knowledge of similar triangles in order to solve the 
problem. 
 
Table 6 below shows how the students performed on the Farm Task pretest 
and posttest. 
 

Table 6: Mean Scores for Farm Task 

 N Mean 
Std. 

Deviation 
Std. Error 

Mean 
LD Coded Pretest 7 0.57 0.54 0.20 
LD Coded Posttest  7 1.14 0.69 0.26 
Not-Coded LD Pretest 20 0.95 0.83 0.19 
Not-Coded LD Posttest 20 1.15 0.59 0.13 
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All Students Pretest 27 0.85 0.77 0.15 
All Students Posttest 27 1.15 0.60 0.12 

 
 
 

The graph below (Figure 14) shows an increase in mean scores between 
Farm task pretest and posttest. 

 

 
     Figure 14: Mean Scores for Pretest Posttest for Farm task 

 
 

The data in Table 7 below indicates that the mean of scores on the Farm 
task is significantly different for Coded LD students, but not for Not Coded 
LD students. This represents a significant improvement in achievement for 
the Coded LD students, but not the Not Coded LD students.  Overall, the 
class did not demonstrate significant improvement. 

 

Table 7: Paired Samples t-test for Farm Task 

Paired-Sample t-test t df 
Sig. (2 
tailed) 

Mean 
Difference 

Coded LD -2.83 6 0.03 -0.57 
Not Coded LD -1.07 19 0.30 -.20 
All students -1.99 26 0.06 -.30 

 
 

This task receives a task difficulty level of 492 on the PISA test.  492 is 
within the middle range of task difficulty.  While still demanding for 12 year 
olds, this was a more familiar task given the type of tasks and activities 
students had engaged in throughout the study.  It is clear that all students 
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were able to transfer the learning gained during the study into this new 
context.  What is worth attending to is the level of performance attained by 
Coded LD students.  These students attained a level of performance 
comparable to the Not Coded LD students.  

 
 
3. Task 3: Carpenter Task 

This task requires students interpret and link text and diagrams representing 
a real-world situation; show insight in 2-D geometrical properties; extract 
information from geometrical representation; calculate perimeters for 
compound and irregular shapes; apply routine procedures.  
 
Table 8 below shows how the students performed on the Carpenter Task 
pretest and posttest. 
 

Table 8: Mean Scores for Carpenter Task 

 N Mean 
Std. 

Deviation 
Std. Error 

Mean 
LD Coded Pretest 7 1.29 0.76 0.29 
LD Coded Posttest  7 3.14 1.22 0.46 
Not-Coded LD Pretest 20 2.00 1.08 0.24 
Not-Coded LD Posttest 20 2.65 0.93 0.21 
All Students Pretest 27 1.81 1.04 0.20 
All Students Posttest 27 2.78 1.01 0.20 
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The graph below (Figure 15) shows an increase in mean scores between 
Carpenter task pretest and posttest.  
 

 
Figure 15: Mean Scores for Pretest Posttest for Carpenter task 

 
 

The data in Table 9 below indicates that the mean of Carpenter Task scores 
is significantly different for the Coded LD students, for Not Coded LD 
students and for all participating students.  This represents a significant 
improvement in achievement for the Coded LD students and the Not Coded 
LD students.  Overall, the class demonstrated significant improvement. 

 
Table 9: Paired Samples t-test for Carpenter Task 

Paired-Sample t-test t df Sig. (2 tailed) 
Mean 

Difference 
Coded LD -4.04 6 0.01 -1.86 
Not Coded LD -2.80 19 0.01 -0.65 
All students -4.20 26 0.00 -0.96 

 
This task receives a task difficulty level of 687, at the highest level within the 
middle range of task difficulty.  Like the Farm Task, this is a demanding task 
for 12 year olds, requiring a high degree of mathematical proficiency.  Again 
it is clear that the tasks and activities students had engaged in throughout 
the study helped them develop this proficiency.  While students did not work 
on tasks like this one, they did calculate perimeters for compound and 
irregular shapes and applied routine procedures.   The Coded LD students’ 
performance on this question shows that they can reach high levels of 
mathematical proficiency. 
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4. Task Four: Twisted Building Task 

This task requires students to imagine the cumulative effect of the twisting 
phenomenon over a number of steps and to construct a graphic 
representation of those turns.  They are required to extract information from 
geometrical representation; calculate degrees of rotation and determine 
orientation following a number of turns.      
 
 
Table 10 below shows how the students performed on the Twisted Building 
Task pretest and posttest. 

 

Table 10: Mean Scores for Twisted Building Task 

 N Mean 
Std. 

Deviation 
Std. Error 

Mean 
LD Coded Pretest 7 1.86 1.46 0.55 
LD Coded Posttest  7 4.00 0.00 0.00 
Not-Coded LD Pretest 20 2.20 1.94 0.43 
Not-Coded LD Posttest 20 4.00 0.00 0.00 
All Students Pretest 27 2.11 1.81 0.35 
All Students Postest 27 4.00 0.00 0.00 

 
 

The graph below (Figure 16) shows an increase in mean scores between 
Twisted Building Task pretest and posttest. 
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Figure 16: Mean Scores for Pretest Posttest for Twisted Building Task 

 
 
 

Table 9 below indicates that the mean of Twisted Building task scores is 
significantly different for Coded LD students, for Not Coded LD students and 
for all participating students.  This represents a significant improvement in 
achievement for the Coded LD students and the Not Coded LD students.  
Overall, the class demonstrated significant improvement. 

 
 

Table 11: Paired Samples t-test for Twisted Building Task 

Paired-Sample t-test t df Sig. (2 tailed) 
Mean 

Difference 
Coded LD -3.87 6 0.01 -2.14 
Not Coded LD -4.16 19 0.01 -1.80 
All students -5.44 26 0.00 -1.89 

 
 

The researchers were unable to find a task difficulty rating for this task in the 
2003 PISA Technical Report.  However, we estimate it to be at the top end 
of the middle range of difficulty. It is a demanding task for 12 year olds, 
requiring a high degree of mathematical proficiency.  Again, tasks and 
activities students had engaged in throughout the study helped all students 
increase their mathematical proficiency.  While students did not work on 



 64 

tasks like this one, they did calculate angles of many different types of lines 
within 1-D, 2-D and 3-D.   While all students demonstrated a significant 
difference, the researchers feel it is once again important to emphasize that 
the Coded LD students’ performance on this task question shows that they 
can reach high levels of mathematical proficiency. 

 
 
5. What changes occurred in overall achievement after administration of the 

UDL intervention? 
 
Table 11 below shows how the students performed as a total on pretest and 
posttest. 

 

Table 12: Mean Scores For All Tasks  

 N Mean 
Std. 

Deviation 
Std. Error 

Mean 
LD Coded Pretest 7 5.00 1.63 0.62 
LD Coded Posttest  7 9.57 1.13 0.43 
Not-Coded LD Pretest 20 6.25 2.75 0.62 
Not-Coded LD Posttest 20 9.90 1.89 0.42 
All Students Pretest 27 5.93 2.54 0.49 
All Students Posttest 27 9.81 1.71 0.33 

 
The graph below (Figure 17) shows an increase the overall mean scores 
between pretests and posttests on all items combined. 
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 Figure 17: Mean Scores for Pretest Posttest for Overall Performance 

 
 
Table 12 below indicates that the mean of overall scores is significantly 
different for Coded LD students, for Not Coded LD students and for all 
participating students.  This represents a significant improvement in 
achievement for the Coded LD students and the Not Coded LD students.  
Overall, the class demonstrated significant improvement. 

 
Table 13: Paired Samples t-test for Overall Achievement 

Paired-Sample t-test t df Sig. (2 tailed) 
Mean 

Difference 
Coded LD -10.67 6 0.00 -4.57 
Not Coded LD -5.84 19 0.00 -3.65 
All students -8.13 26 0.00 -3.89 

 
All students achieved a high level of mathematical proficiency as 
measured by these four PISA test items after the UDL intervention.  This 
leads the researchers to conclude that designing mathematical learning for 
students as outlined in this study, leads to significantly increased student 
achievement. 
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Findings 

Seven findings emerged from a close analysis of the data, which it is hoped will 
provide guidance to teachers, school jurisdiction leaders, policy makers and 
subsequent researchers as they consider: 

• Employing UDL principles to build mathematical proficiency for all 
students 

• Creating a curriculum that is accessible to all students 
• Improving the achievement of special needs students 
• Building the capacity of teachers to change mathematics teaching 

practices. 
 
These findings are: 

1. All students showed significant improvement in achievement 
2. All students made gains in the five strands of mathematical 

proficiency. 
3. All students can engage with difficult mathematical ideas when 

they are provided with dynamic assessment. 
4. The principles of UDL permit teachers to break the stranglehold of 

the procedural script for teaching mathematics. 
5. Access to technology is a critical factor in an accessible 

mathematics classroom 
6. Introducing UDL into the mathematics classroom is a disruptive 

innovation. 
7. Creating accessible mathematics classrooms, consistent with UDL 

principles, requires increased teacher knowledge and support for 
on-going professional development. 

 
 
 

1. All students showed significant improvement in achievement.  
The PISA test items used for pre and post-tests were chosen (1) for their 
validity and reliability and (2) for their ability to measure mathematical 
proficiency.  The four items had levels of difficulty from middle to highest 
range.  The instructional intervention was not designed to “teach to the 
test”.  Rather, all elements were designed to build mathematical 
proficiency that would transfer to a number of contexts, one of which is 
standardized testing of the highest international caliber. 
 
Common sense worries about changing mathematics instruction to better 
meet the needs of special needs students were not realized. All students 
improved on all items.  Mean scores for all tasks demonstrate statistically 
significant improvement for coded LD students, for not-coded LD 
students and for the class as a whole.  Thus, it is possible to raise both 
the ceiling and the floor of student achievement by incorporating UDL 
principles into the design of mathematics curricula. 
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2. All students demonstrated gains in the five strands of mathematical 
proficiency. 
Kilpatrick, Swafford and Findell (2001) define mathematical proficiency in 
terms of five intertwining strands:  
• conceptual understanding – an understanding of concepts, operations 

and relations.  Conceptual understanding frequently results in 
students’ comprehending connections and similarities among 
interrelated facts. 

• procedural fluency – flexibility, accuracy and efficiency in 
implementing appropriate procedures.  Skill in proficiency includes 
the knowledge of when and how to use procedures.  This includes 
efficiency and accuracy in basic computations. 

• strategic competence – the ability to formulate, represent and solve 
mathematical problems.  This is similar to problem solving.  Strategic 
competence, conceptual understanding and procedural fluency are 
mutually supportive. 

• adaptive reasoning - the capacity to think logically about concepts 
and conceptual relationships.  Reasoning is needed to navigate 
through the various procedures, facts and concepts required to arrive 
at solutions. 

• productive disposition – positive perceptions about mathematics.  
Productive disposition develops as students gain more mathematical 
understanding and become capable of learning and doing 
mathematics. 

 
Analysis of the qualitative data demonstrates the developing 
mathematical proficiency of students in this Grade 7 classroom as 
evidenced in their ability to dialogue with each other, to explore concepts 
in depth, to think and reason, to test conjectures and justify solutions.   
 
When considering the power of UDL principles to change the dominant 
procedural script of mathematics teaching, it is especially important to 
note that the instructional intervention involved five essential and 
connected elements: (1) mathematical content knowledge; (2) 
pedagogical content knowledge for mathematics; (3) UDL principles; (4) 
assessment for learning and (5) an instructional design process that 
supports the effective integration of mathematics strands as identified in 
the Program of Studies. 
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3. All students can engage with difficult mathematical ideas when they 
are provided with dynamic assessment. 
Assessment for learning places teachers and students in a design 
environment in which constant feedback informs next teaching and 
learning steps.  As Black (2004) indicates, there is a great deal of 
confusion about the kinds of assessment that builds proficiency and 
improves achievement.  In this study, students received dynamic 
feedback in a number of ways: 

• From teachers, in response to their individual work 
• From teachers, in response to the emergent design of lessons and 

activities to address misconceptions 
• From peers as they worked and talked together 
• From the learning environment, particularly in the case of the 

dynamic geometry software 
 

It is important to emphasize the difference between dynamic assessment 
and feedback through tests, quizzes and assignments designed for 
purposes of accountability, ranking of students, or certifying competence.  
The latter assessment practices are particularly damaging to students 
“with low attainments who are led to believe they lack ‘ability’ and are not 
able to learn”(Black, 2004, p.1). 
 
Learning goals remained the same for all students throughout the study.  
What changed was instructional design that included multiple means of 
representation and expression.  When (1) the learning task was 
mathematically robust; (2) the representation of concepts was varied in 
pedagogically sound ways and (3) students were given a range of 
opportunities to express their emerging understandings, then all students 
were able to engage deeply.  They volunteered their attention to and 
interest in the learning task. 
 

 
4. The principles of UDL permit teachers to break the stranglehold of 

the procedural script for teaching mathematics. 
Creating more robust and interesting mathematical tasks, problems or 
inquiries is a necessary component of the design for accessible 
classrooms.  However, it is not sufficient to provide more robust, complex 
problems intended to create mathematical proficiency (Stigler and 
Hiebert, 1999; Shanker Institute, 2005).  The dominant North American 
script for teaching mathematics is so ingrained that teachers turned even 
the best problems into routine, procedural exercises. 
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Incorporating UDL principles into instructional design has the potential to 
change instruction at its root, disrupting the processes by which many 
students come to be labeled as unable to learn mathematics. 

 
5. Access to technology is a critical factor in an accessible 

mathematics classroom. 
Currently, the use of technology in UDL emphasizes the role of assistive 
technologies that permit students with identified needs to adapt to the 
pervasively print environment of most classrooms.  AT has a definite role 
to play in creating more accessible learning opportunities for all students. 
 
However, AT alone may leave untouched the procedural script for 
teaching mathematics if it leaves assumptions about the effective 
development of mathematical proficiency unchallenged.  We can easily 
imagine classrooms in which, for examples, technology is introduced so 
that weaker students can in some sense keep up with the demands of 
fast-right-answer-giving, or where modifications that “dumb down” or 
fragment experiences are provided in the name of assistance. 
 
What this study demonstrates is that the inherent nature of digital 
environments such as Geometer’s Sketchpad and IO to represent and 
express mathematical concepts in dynamic ways.  
 
 

6. Introducing UDL into the mathematics classroom is a disruptive 
innovation. 
While the goal of creating increasingly accessible classrooms seems 
incontrovertible, actually creating the changes that make a difference for 
students disrupts the status quo. 
 
(1) The research team made a number of other attempts to introduce 
range of technology-rich environments: email, wiki and access to a 
common drive and print-outs of emerging work.  Difficulties with district 
policies and the school network and resources limited our opportunities 
to do this.  As a work-around, we created an online website so that 
students could access Geometer’s Sketchpadactivities and 
instructions.   
 
The school jurisdiction had made considerable effort to respond to 
findings of Friesen’s 2006 report on accessible classrooms.  On short 
notice, software was installed, enabled email and ensured that Universal 
Access features were accessible from all desktops.  We appreciated 
these efforts, and could not have conducted the study without them. Nor 
could we have designed instruction incorporating principles of UDL had 
students not had access to laptop computers that functioned well.   
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In this report we note areas in which improvement is still possible. 
(2) Rigid timetables, a ubiquitous feature of all secondary schools, 
interfere with the capacity of students to engage with learning in ways 
that build mathematical proficiency.  When daily work is fragmented into 
short blocks of time, students and teachers become frustrated by 
arbitrary (and in our view, unnecessary) constraints on engagement.   
 
Block timetables have a checkered history in secondary school reform.  
Unsuccessful attempts to introduce reform by increasing class times to 
90 or 120 minute blocks without changing the teaching script, itself, have 
left both students and teachers frustrated.  Doing more of the same kinds 
of procedural exercises, now for double or triple the time becomes 
excruciating.  As with other elements in this study, we emphasize that a 
structural change, alone, will not make the kinds of difference we report 
here. 
 
However, the teacher and student responses to constraints of the 
timetable confirm what we have found in other contexts.  When students  
become engaged in the ways described here, both they and their 
teachers demand longer blocks of uninterrupted time for their work.  It is 
our experience that introducing this kind of innovation inevitably puts 
pressure on existing structures such as the timetable. 
 
(3) We had not anticipated the extent to which the increased proficiency 
of coded LD students disrupted the social hierarchies of the classroom.  
Students who considered themselves (or were considered by others) to 
be better at math were initially very uncomfortable with the emerging 
confidence and ability of students they thought were less able.   
 
Disruptions of this sort point, perhaps, to the tenacity of conventional 
teaching scripts.  When teachers and students experience initial 
discomfort at the introduction of innovation, it is tempting to retreat to 
familiar ground.   
 
It is easy to pen the words that describe access for all to high levels of 
mathematical proficiency.  It will be more challenging to live with the 
inevitable pressures that such a goal will place on taken-for-granted, 
everyday structures and experiences. 

 
 

7. Creating accessible mathematics classrooms consistent with UDL 
principles requires increased teacher knowledge and support for 
on-going professional development. 
Changing teaching practices and school, jurisdiction and classroom 
structures will require significant investment in professional development. 
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(1) Most teachers, principals and senior administrators recognize the 
experience described by Mrs. Jamieson.  They, themselves, have had 
unfortunate experiences with math in school—or they know many people 
in the same boat.  Teaching mathematics that incorporates UDL 
principles requires teachers to design learning experiences in 
mathematics that they, themselves, have never experienced. 
 
Progress will require the active engagement of mathematicians and math 
educators to design pedagogical content knowledge that is 
mathematically sound.  More math courses of the procedural sort will not 
get teachers out of their current dilemma.  While most need more 
mathematics, it is mathematics of a particular sort: the kind that permits 
them to design instruction that gives students access to complex ideas. 
 
Mrs. Jamieson reported to the research team that she had followed up 
her involvement in the study with a summer course in mathematics.  
Knowing that she, herself, needed a deeper understanding of 
mathematical concepts, she was also clear that a course, alone, was 
unlikely to help in the ways she desired.  “I want to be able to think like 
you,” she told Dr. Friesen.  And to do that, she knew she wanted more 
opportunities to explore pedagogical issues at the same time. 
 
(2) Leadership to support teachers like Mrs. Jamieson, to provide them 
with useful feedback on their teaching for professional growth, and to 
make sound judgments about administrative issues such as timetables 
and allocation of resources requires a degree of understanding of UDL 
principles and mathematics that principals generally lack at this time.  
Developing the capacity to lead for learning of this sort cannot be left to 
chance. 
 
 
 

Recommendations 

 
1. Create a curriculum for mathematics that draws upon the principles of 

UDL.  
 

Context 
Mathematics has several key elements for curriculum design using UDL 
strongly in place: 

• Organizations such as the Pacific Institute for Mathematical Sciences 
(PIMS) have already indicated a strong desire to bring 
mathematicians, math educators and teachers to together to create 
robust problems and instructional design that increases math 
proficiency in both teachers and students.   
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• PIMS has already created a network of mathematicians, math 
educators, teachers and First Nations and Metis Elders to address the 
particular concerns of mathematics and First Nations and Metis 
students. This demonstrates PIMS willingness and capacity to address 
the issue of making mathematics accessible to all. 

• The National Science Foundation has invested heavily in on-going 
work to create mathematically robust and engaging problems available 
at no cost to teachers.   

• There is a developing history of professional development through 
Lesson Study in Canada and the US which involves mathematicians, 
math educators and teachers. 

• The International Assessment Consortium from UK continue to identify 
the problems in practice with assessment—particularly struggles 
teachers have to build assessment for learning into their practice.  We 
can build upon and contribute to this work. 

• Alberta Education has a strong interest in exploring the application of 
UDL in general and in mathematics in particular.  

 
That is, key elements of designing effectively for UDL in the mathematics 
classroom are already in place in other contexts. Alberta Education could draw 
quickly upon these resources to create an Alberta-made approach to the 
creation of accessible classrooms in mathematics. 
 
The successful creation of this Alberta solution to the problem of raising the 
ceiling and lifting the floor could provide a model for changes to all subject 
areas.   
 

 
Implications for Alberta Education 

• Look for synergy partners like PIMS, the International Assessment 
Consortium and CAST who understand the particular issues of 
teaching mathematics, assessment for learning and UDL.  

• Special Programs Branch should take the lead in bringing partners 
together to create a mathematics curriculum (understood in its 
broadest sense) designed according to the principles of UDL.   

• Special Programs Branch should take the lead in developing and 
publishing resources that represent both mathematics and 
pedagogical content in multiple, flexible and technologically 
sophisticated ways.  

 
Implications for Universities 

• PIMS mathematicians and math educators come from the 
universities.  Their involvement in creating a provincial curriculum is 
essential.  It is also hoped that their involvement in this project would 
increase the effectiveness of teacher preparation in mathematics. 
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• Faculties of education must address the development of proficiency in 
all students, not as a special education topic, but as an integral part of 
their curriculum and instruction courses. 

 
 
2. Establish a network of teachers who are willing to form a Community 

of Practice.  
 
 

Context 
Conventionally, new curricula are developed by some and delivered by 
others.  In the U.S. we have seen the failure of this approach, even to the 
creation and dissemination of mathematically robust problems.  
Recommendation #2 suggests that the development of a mathematics 
curriculum based on UDL will require design research in which teachers are 
involved from the outset in multiple ways: in dialogue with mathematicians 
and math educators; in working through robust problems to increase their 
own mathematical understandings; to dialogue as they work in their 
classrooms; and to make their practice public so that others in the network 
can build their own mathematical and pedagogical proficiency. In essence, 
we are suggesting a new approach to developing curriculum by prototyping 
the innovation as it is being created.  
 
In this report, we have suggested the potential pitfalls of attaching UDL  
principles to tenacious procedural scripts for the teaching of mathematics.  It 
is easy to read about such principles and quickly assume that one knows 
how to teach with them.  We anticipate, for example, educators who will 
dismiss their power by saying, “They are just good practice.  There’s nothing 
really new in all this.” 
 
If that happens, then the province will suffer a rash of “multiples” stuck on to 
existing resources and procedures.  We do not underestimate the danger of 
this, nor the care with which one must proceed to develop innovations that 
will actually take hold effectively. 
 
The support and active involvement of teachers willing to do what Mrs. 
Jamieson did—to try unfamiliar approaches over an extended period of 
time—will be key to the innovation’s success. 
 
Alberta has the technological broadband infrastructure through SuperNet to 
permit teachers to connect in both synchronous and asynchronous ways.  
The community of practice does not need to be geographically limited.  In 
fact, in terms of addressing issues of diversity, the capacity to have teachers 
from across the province--rural, urban, First Nations--working on the same 
issues is essential.  
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Implications for Alberta Education 

• Special Programs Branch should take the organizing lead in bringing 
this network together and supporting its work with funding and 
resources. 

• Special Programs Branch should issue a request for proposals (RFP) 
to school jurisdictions to become part of this network.  This will ensure 
that school jurisdictions get behind the initiative.  

• Design the RFP to include stipulations for buy-out time for participating 
teachers.  In the past, CANARIE-sponsored initiatives provided 
participating teachers with a day a week to devote appropriate time 
and attention. 

• Establish a research committee to conduct design research on the 
work and outcomes of the network 

 
Implications for School Jurisdictions 

• Allocate resources to the initiative. 
• Develop processes to feed emerging work from the network back into 

the jurisdiction to develop the capacity of others to work in these ways 
• Provide and support the necessary technological infrastructure  

 
Implications for Principals 

• Develop the instructional leadership capacity to direct and supervise 
work at the school level.  Few principals will have taught in these 
ways, and it cannot be assumed that they will be able to give the 
most useful feedback possible when teachers introduce the 
innovation in their classrooms.  It would do a disservice to principals 
and to teachers to establish a myth that UDL principles are just like all 
the other good things they have always done.  Leaders must 
understand and be able to act on the differences that make a 
difference. 

• Disruptions to the status quo are bound to occur.  Of necessity, for 
example,  

o the need for new timetables may emerge.   
o understanding the dynamics of anticipated and unanticipated 

resistance that puts pressure on teachers to revert to 
conventional practices. 

 
Implications for Teachers  

• Active participation in a design research network will take time for 
participating teachers.  It is unreasonable to ask people to do 
pioneering work without providing additional time and resources they 
find meaningful.   

• Participants will be asked to demonstrate willingness to: 
o increase their own mathematical proficiency 
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o learn the principles of UDL and understand their application to 
mathematics in particular 

o use technology both to represent concepts to students and to 
permit students to express knowledge in multiple ways 

o collaborate with others in ways that build new knowledge and 
“next practice” 

o make their practice increasingly public by sharing video clips; 
student responses to the work; struggles and successes in 
developing next practices, etc. 



 76 

References 

 
Adams, R., & Wu, M. (Eds.). (2002). PISA 2000 technical report. Paris: 
Organization for Economic Co-operation and Development (OECD). Retrieved 
January 7, 2008 from http://www.pisa.oecd.org/dataoecd/53/19/33688233.pdf 
 
Alberta Education (2006).  Individualized program planning.  Retrieved January 
7, 2008 from http://www.education.alberta.ca/media/511715/ipp.pdf 
 
Alberta Education (2007).  Mathematics kindergarten to grade 9 program of 
studies.  Alberta Education.  Retrieved January 7, 2008 from 
http://education.alberta.ca/media/645594/kto9math.pdf 
 
Assessment Reform Group (1999).  Assessment for learning: Beyond the black 
box.  Cambridge: UK: Cambridge School of Education.  Retrieved January 7, 
2008  from http://k1.ioe.ac.uk/tlrp/arg/AssessInsides.pdf 
 
Ball, D. & Bass, H. (2003).  Toward a practice-based theory of mathematical 
knowledge for teaching.  In B. Davis & E. Simmt (Eds.), Proceedings of the 
2002 Annual Meeting of the Canadian Mathematics Education Study Group, 
(pp.3-14).  Edmonton, AB: CMESG/GCEDM. 
 
Barab, S. & Squire, K. (2004). Design-based research: Putting a stake in the 
ground.  The Journal of the Learning Sciences, 13(1), 1-14. 
 
Bausch, M  & Hasselbring, T. (2005). Using AT: Is it working?  Eye on 
Research.  Threshold.  Retrieved January 7, 2008 from 
http://www.ciconline.org/threshold.  
 
Bereiter, C. (2002). Design research for sustained innovation. Cognitive studies, 
Bulletin of the Japanese Cognitive Science Society, 9(3), 321–327. 
 
Black, P. (2004). The nature and value of formative assessment for learning.  
Assessment for Learning Group.  Retrieved January 7, 2008 from 
http://www.kcl.ac.uk/content/1/c4/73/57/formative.pdf 
 
Black, P. & Wiliam, D (1998a).   Assessment and Classroom Learning.  
Assessment in Education, 5(1), 7-71.  
 
Black, P. J.; Harrison, C.; Lee, C.; Marshall, B. & Wiliam, D (2002).  Working 
inside the black box: Assessment for learning in the classroom. London, UK: 
King’s College London School of Education.  
 
Bransford, J., Brown, A. & Cocking, R. (eds) (2000).  How people learn: Brain, 
mind, experience and school.  Washington, DC: National Academies Press. 



 77 

 
Cardinali, R., & Gordon, Z. (2002). Technology: Making things easier for 
all of us - for the disabled making things possible. Equal Opportunities 
International, 21(1): 65-79. 
 
CAST (2006).  Retrieved January 7, 2008 from http://www.cast.org 
 
Clifford, P. & Friesen, S. (2001).  Bringing Learning to Learners: The Galileo  
Educational Network.  Paper presented at ED-MEDIA 2001: World Conference 
on Educational Multimedia, Hypermedia and Telecommunications, Tampere, 
Finland.  
 
Cohen, R. B. (2005). Examining the work of constructing a representational 
context in elementary mathematics teaching. Unpublished doctoral dissertation, 
University of Michigan, Ann Arbor, MI. 
 
Davies, A. (2002-2003).  Finding proof of learning in a one-to-one computing 
classroom. Courtenay, B.C.: Connections Publishing. 

Dolan, R. P. & Hall, T. E. (2001). Universal Design for Learning: Implications for 
Large-Scale Assessment. IDA Perspectives 27(4): 22-25.  

Donovan, M.S. & Bransford, J. (2005).  Pulling threads. In M.S. Donovan & J. 
Bransford (Eds.), How students learn: Mathematics in the classroom.  (pp. 569-
590).  Washington, DC: National Academies Press. 
 
Edyburn, D. (2005).  A primer on Universal Design (UD) in education.  
Retrieved January 7, 2008 from http://www.uwm.edu/~edyburn/ud.html. 
 
Edyburn, D. (2006a). Failure is not an option: Collecting, reviewing, and acting 
on  
evidence for using technology to enhance academic performance. Learning and  
Leading With Technology, 34(1), 20-23.  
  
Edyburn, D. (2006b).  Principles of universal design and the implications for  
policy initiatives.  Unpublished manuscript.  
 
Edyburn, D. (2006c). Re-examining the role of assistive technology in learning. 
Closing the Gap. 25(5), 10-11, 26.  Retrieved January 7, 2008 from 
http://www.uwm.edu/%7eedyburn/ATinDepth.pdf  
 
Firchow, N. (2002) Universal Design for Learning: Improved access for all. 
Retrieved January 7, 2008 from SchwabLearning.org 
http://www.schwablearning.org/articles.aspx?r=490 

Friesen, S. (2007). Inside an accessible classroom. Unpublished manuscript. 



 78 

Fuson, K., Kalchman, M. & Bransford, J. (2005).  Mathematical understanding: 
An introduction.  In M.S. Donovan & J. Bransford (Eds.), How students learn: 
Mathematics in the classroom.  (pp. 217-256).  Washington, DC: National 
Academies Press. 

Gay, L., Mills, G., & Airasian, P. (2006). Educational research: Competencies 
for analysis and applications (8th ed.). New Jersey: Pearson. 

Gilbert, J. (2005). Catching the knowledge wave?  The knowledge society and 
the future of education.  Wellington, NZ: NZCER Press.  

Hendricks, P. & Daley, J. (2004). Technology: Is It Accessible to All Students? 
Mid-Atlantic Regional Technology in Education Consortium. Retrieved January 
7, 2008, from: 
http://www.temple.edu/MARTEC/publications/technobriefs/tbrief39.html   

International Association for the Evaluation of Education Achievement (1995).  
Third international mathematics and science study.  Boston College.  Retrieved 
December 30, 2007 from http://timss.bc.edu/ 

Kaplan, R. & Kaplan, E. (2007).  Out of the labyrinth: Setting mathematics free.  
New York:  Oxford University Press. 

Kelly, A. (2003). Theme issue: The role of design in educational research. 
Educational Researcher, 32(1), 3–4. 
 
Kilpatrick, J., Swafford, J., & Findell, B. (Eds.) (2001).  Adding it up: Helping 
children learn mathematics.  Washington, D.C.: National Academy Press. 

Leininger, M. M. (1985). Ethnography and ethnonursing: Models and modes of 
qualitative data analysis. In M. M. Leininger (Ed.), Qualitative research methods 
in nursing (pp. 33-72). Orlando, FL: Grune & Stratton.  

Meo, G. (2005). Curriculum access for all: Universal Design for Learning. 
Harvard Education Letter,  21(5). Retrieved January 7, 2008 from 
http://www.edletter.org/past/issues/2005-nd/meo.shtml 

Mighton, J. (2007). The end of ignorance: Multiplying our human potential. 
Toronto, ON: Knopf Canada. 
 
Mighton, J. (2003).  The myth of ability: Nurturing mathematical talent in every 
child.  Toronto, ON: House of Anansi Press Inc.   
 
Milgram, J. (2005).  The mathematics pre-service teachers need to know.  
Retrieved January 7, 2008 from 
http://hub.mspnet.org/exit.cfm/FIE_book.pdf?url=ftp%3A%2F%2Fmath%2Estan
ford%2Eedu%2Fpub%2Fpapers%2Fmilgram%2FFIE%2Dbook%2Epdf. 



 79 

 
NCTM (2000).  Executive summary: Principles and standards for school 
mathematics.  NCTM.  Retrieved January 7, 2008 from 
http://www.nctm.org%2FuploadedFiles%2FMath_Standards%2F12752_exec_p
ssm.pdf&ei=hAx9R53OOaSkgQLmnoQ1&usg=AFQjCNHrgv1d4nw8aJTT3Wc0
TA2kB0oKDw&sig2=rZ6KDzPigEXABUXH2RDqtA  
 
Peters, S. (2007). Education for all? Journal of Disability Policy Studies. 18(2), 
(Fall), p.98-108. 
 
Pittard, V. (2004). Evidence for e-learning policy. Technology, Pedagogy and 
Education, 13(2), pp. 181–194. 
 
Research Points (2006).  Do the math: Cognitive demand makes a difference.  
Research Points, 4(2).  AERA.  
 
Rose, D. & Meyer, A. (2002).  Teaching every student in the digital age: 
Universal design for learning.  ASCD.  Retrieved January 7, 2008 from 
http://www.cast.org/teachingeverystudent/ideas/tes/. 

Rose, D.H., & Meyer, A. (2006). A practical reader in Universal design for 
learning. Cambridge, MA: Harvard Education Press. 

Rose, D., Meyer, A. & Hitchcock, C. (Eds). (2005). The universally designed 
classroom: Accessible curriculum and digital technologies.  Cambridge, MA: 
Harvard University Press. 
 
Rothberg, M & Treviranus, J. (2006).  Accessible e-learning demonstrations 
using IMS accessibility specifications.  ATIA National Conference, Orlando, 
Florida.  Retrieved January 7, 2008 from 
http://ncdae.org/activities/atia06/presentations.cfm 
 
Senechal, M. (1990).  Shape.  In L. Steen (Ed.) On the shoulders of giants: New 
approaches to numeracy.  Washington, D.C.: National Academies Press. 
 
Shanker Institute (2005, May).  From Best Research to What Works: Improving 
the Teaching and Learning of Mathematics: A Forum (Washington, D. C., May 
5, 2005). 
 
Stiggins, R., Arter, J.; Chappuis, J. & Chappius, S. (2004).   Classroom 
assessment for student achievement: Doing it right – using it well.  Portland, 
Oregon: Assessment Training Institute. 
 
Stigler, J. & Hiebert, J. (1999).  The teaching gap:  Best ideas from the world’s 
teachers for improving education in the classroom.  New York, NY: The Free 
Press. 



 80 

 
Swain, J. & Swan, M. (2007).  Thinking through mathematics: Research report.  
NRDC.  Retrieved January 7, 2008 from 
http://www.maths4life.org/uploads/documents/doc_296.pdf. 
 

The Alberta Teachers Association (ATA).  (2003).  Trying to teaching, trying to 
learn: Listening to students.  Edmonton, AB: The Alberta Teachers Association. 
 
The Design-Based Research Collective. (2003). Design-based research: An 
emerging paradigm for educational inquiry.  Educational Researcher, 32(1), 5-8. 
 
U.S. Department of Education. (2004, March 16). Professional development 
and innovative tools for learning science . Panel 2 discussion at the Secretary's 
Summit on Science, Washington, DC. 
 
van den Akker, J., Graveemeijer, K., McKenney, S. and Nieveen, N. (eds). 
(2006). Educational Design Research. London and New York: Routledge. 
 
Wineburg, S., & Wilson, S. M. (1991). Subject-matter knowledge in the teaching 
of history. In J. Brophy (Ed.), Advances in research on teaching (Vol. 2, pp. 305-  
345). Greenwich, CT: JAI Press. 
 
 
 
 


