Counting Polyominoes

Polyominoes are shapes that are made by gluing identical squares along their edges.

Extensions:

If you are allowed to rotate a tetromino, but cannot flip it onto its back, how many different tetrominos are there? How many different pentominoes?

There is also no consensus about whether polynomials with holes should be considered polynomials. What is the smallest polynomial which has a hole? How did you define "hole"? What is the smallest size of polynomial which has $2,3,4,5,9$ and 21 holes? Define "hole" in a different way and repeat. Make a generalization.

Define your own shapes using triangles or cubes or squares. How many are there?

Place all of the pentominoes into a 3 by 20 rectangle. There are only 2 different ways to do this if you exclude trivial rotations.

The Math in This Problem

This classic problem has students working with a variety of polyominoes, studying their properties while performing all sorts of rotations with them. By studying these unique shapes, students can observe and comprehend the concepts of reflections and rotations by manipulating these various geometric forms.

